(%i1) batch(diffeq.max) read and interpret file: /home/dennis/mastersource/mine/omnisode/diffeq.max (%i2) load(stringproc) (%o2) /usr/share/maxima/5.27.0/share/stringproc/stringproc.mac (%i3) check_sign(x0, xf) := block([ret], if xf > x0 then ret : 1.0 else ret : - 1.0, ret) (%o3) check_sign(x0, xf) := block([ret], if xf > x0 then ret : 1.0 else ret : - 1.0, ret) (%i4) est_size_answer() := block([min_size], min_size : glob_large_float, if omniabs(array_y ) < min_size then (min_size : omniabs(array_y ), 1 1 omniout_float(ALWAYS, "min_size", 32, min_size, 32, "")), if min_size < 1.0 then (min_size : 1.0, omniout_float(ALWAYS, "min_size", 32, min_size, 32, "")), min_size) (%o4) est_size_answer() := block([min_size], min_size : glob_large_float, if omniabs(array_y ) < min_size then (min_size : omniabs(array_y ), 1 1 omniout_float(ALWAYS, "min_size", 32, min_size, 32, "")), if min_size < 1.0 then (min_size : 1.0, omniout_float(ALWAYS, "min_size", 32, min_size, 32, "")), min_size) (%i5) test_suggested_h() := block([max_value3, hn_div_ho, hn_div_ho_2, hn_div_ho_3, value3, no_terms], max_value3 : 0.0, no_terms : glob_max_terms, hn_div_ho : 0.5, hn_div_ho_2 : 0.25, hn_div_ho_3 : 0.125, omniout_float(ALWAYS, "hn_div_ho", 32, hn_div_ho, 32, ""), omniout_float(ALWAYS, "hn_div_ho_2", 32, hn_div_ho_2, 32, ""), omniout_float(ALWAYS, "hn_div_ho_3", 32, hn_div_ho_3, 32, ""), value3 : omniabs(array_y hn_div_ho_3 + array_y hn_div_ho_2 no_terms no_terms - 1 + array_y hn_div_ho + array_y ), no_terms - 2 no_terms - 3 if value3 > max_value3 then (max_value3 : value3, omniout_float(ALWAYS, "value3", 32, value3, 32, "")), omniout_float(ALWAYS, "max_value3", 32, max_value3, 32, ""), max_value3) (%o5) test_suggested_h() := block([max_value3, hn_div_ho, hn_div_ho_2, hn_div_ho_3, value3, no_terms], max_value3 : 0.0, no_terms : glob_max_terms, hn_div_ho : 0.5, hn_div_ho_2 : 0.25, hn_div_ho_3 : 0.125, omniout_float(ALWAYS, "hn_div_ho", 32, hn_div_ho, 32, ""), omniout_float(ALWAYS, "hn_div_ho_2", 32, hn_div_ho_2, 32, ""), omniout_float(ALWAYS, "hn_div_ho_3", 32, hn_div_ho_3, 32, ""), value3 : omniabs(array_y hn_div_ho_3 + array_y hn_div_ho_2 no_terms no_terms - 1 + array_y hn_div_ho + array_y ), no_terms - 2 no_terms - 3 if value3 > max_value3 then (max_value3 : value3, omniout_float(ALWAYS, "value3", 32, value3, 32, "")), omniout_float(ALWAYS, "max_value3", 32, max_value3, 32, ""), max_value3) (%i6) reached_interval() := block([ret], if glob_check_sign array_x >= glob_check_sign glob_next_display 1 then ret : true else ret : false, return(ret)) (%o6) reached_interval() := block([ret], if glob_check_sign array_x >= glob_check_sign glob_next_display 1 then ret : true else ret : false, return(ret)) (%i7) display_alot(iter) := block([abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no], if reached_interval() then (if iter >= 0 then (ind_var : array_x , 1 omniout_float(ALWAYS, "x[1] ", 33, ind_var, 20, " "), analytic_val_y : exact_soln_y(ind_var), omniout_float(ALWAYS, "y[1] (analytic) ", 33, analytic_val_y, 20, " "), term_no : 1, numeric_val : array_y , term_no abserr : omniabs(numeric_val - analytic_val_y), omniout_float(ALWAYS, "y[1] (numeric) ", 33, numeric_val, 20, " "), if omniabs(analytic_val_y) # 0.0 abserr 100.0 then (relerr : -----------------------, omniabs(analytic_val_y) if relerr > 1.0E-34 then glob_good_digits : 2 - floor(log10(relerr)) else glob_good_digits : 16) else (relerr : - 1.0, glob_good_digits : - 1), if glob_iter = 1 then array_1st_rel_error : relerr 1 else array_last_rel_error : relerr, omniout_float(ALWAYS, 1 "absolute error ", 4, abserr, 20, " "), omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"), omniout_int(INFO, "Correct digits ", 32, glob_good_digits, 4, " "), omniout_float(ALWAYS, "h ", 4, glob_h, 20, " ")))) (%o7) display_alot(iter) := block([abserr, analytic_val_y, ind_var, numeric_val, relerr, term_no], if reached_interval() then (if iter >= 0 then (ind_var : array_x , 1 omniout_float(ALWAYS, "x[1] ", 33, ind_var, 20, " "), analytic_val_y : exact_soln_y(ind_var), omniout_float(ALWAYS, "y[1] (analytic) ", 33, analytic_val_y, 20, " "), term_no : 1, numeric_val : array_y , term_no abserr : omniabs(numeric_val - analytic_val_y), omniout_float(ALWAYS, "y[1] (numeric) ", 33, numeric_val, 20, " "), if omniabs(analytic_val_y) # 0.0 abserr 100.0 then (relerr : -----------------------, omniabs(analytic_val_y) if relerr > 1.0E-34 then glob_good_digits : 2 - floor(log10(relerr)) else glob_good_digits : 16) else (relerr : - 1.0, glob_good_digits : - 1), if glob_iter = 1 then array_1st_rel_error : relerr 1 else array_last_rel_error : relerr, omniout_float(ALWAYS, 1 "absolute error ", 4, abserr, 20, " "), omniout_float(ALWAYS, "relative error ", 4, relerr, 20, "%"), omniout_int(INFO, "Correct digits ", 32, glob_good_digits, 4, " "), omniout_float(ALWAYS, "h ", 4, glob_h, 20, " ")))) (%i8) adjust_for_pole(h_param) := block([hnew, sz2, tmp], block(hnew : h_param, glob_normmax : glob_small_float, if omniabs(array_y_higher ) > glob_small_float 1, 1 then (tmp : omniabs(array_y_higher ), 1, 1 if tmp < glob_normmax then glob_normmax : tmp), if glob_look_poles and (omniabs(array_pole ) > glob_small_float) 1 array_pole 1 and (array_pole # glob_large_float) then (sz2 : -----------, 1 10.0 if sz2 < hnew then (omniout_float(INFO, "glob_h adjusted to ", 20, h_param, 12, "due to singularity."), omniout_str(INFO, "Reached Optimal"), return(hnew))), if not glob_reached_optimal_h then (glob_reached_optimal_h : true, glob_curr_iter_when_opt : glob_current_iter, glob_optimal_clock_start_sec : elapsed_time_seconds(), glob_optimal_start : array_x ), hnew : sz2), return(hnew)) 1 (%o8) adjust_for_pole(h_param) := block([hnew, sz2, tmp], block(hnew : h_param, glob_normmax : glob_small_float, if omniabs(array_y_higher ) > glob_small_float 1, 1 then (tmp : omniabs(array_y_higher ), 1, 1 if tmp < glob_normmax then glob_normmax : tmp), if glob_look_poles and (omniabs(array_pole ) > glob_small_float) 1 array_pole 1 and (array_pole # glob_large_float) then (sz2 : -----------, 1 10.0 if sz2 < hnew then (omniout_float(INFO, "glob_h adjusted to ", 20, h_param, 12, "due to singularity."), omniout_str(INFO, "Reached Optimal"), return(hnew))), if not glob_reached_optimal_h then (glob_reached_optimal_h : true, glob_curr_iter_when_opt : glob_current_iter, glob_optimal_clock_start_sec : elapsed_time_seconds(), glob_optimal_start : array_x ), hnew : sz2), return(hnew)) 1 (%i9) prog_report(x_start, x_end) := block([clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec], clock_sec1 : elapsed_time_seconds(), total_clock_sec : convfloat(clock_sec1) - convfloat(glob_orig_start_sec), glob_clock_sec : convfloat(clock_sec1) - convfloat(glob_clock_start_sec), left_sec : - convfloat(clock_sec1) + convfloat(glob_orig_start_sec) + convfloat(glob_max_sec), expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(clock_sec1) - convfloat(glob_orig_start_sec)), opt_clock_sec : convfloat(clock_sec1) - convfloat(glob_optimal_clock_start_sec), glob_optimal_expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(opt_clock_sec)), glob_total_exp_sec : total_clock_sec + glob_optimal_expect_sec, percent_done : comp_percent(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x )), glob_percent_done : percent_done, 1 omniout_str_noeol(INFO, "Total Elapsed Time "), omniout_timestr(convfloat(total_clock_sec)), omniout_str_noeol(INFO, "Elapsed Time(since restart) "), omniout_timestr(convfloat(glob_clock_sec)), if convfloat(percent_done) < convfloat(100.0) then (omniout_str_noeol(INFO, "Expected Time Remaining "), omniout_timestr(convfloat(expect_sec)), omniout_str_noeol(INFO, "Optimized Time Remaining "), omniout_timestr(convfloat(glob_optimal_expect_sec)), omniout_str_noeol(INFO, "Expected Total Time "), omniout_timestr(convfloat(glob_total_exp_sec))), omniout_str_noeol(INFO, "Time to Timeout "), omniout_timestr(convfloat(left_sec)), omniout_float(INFO, "Percent Done ", 33, percent_done, 4, "%")) (%o9) prog_report(x_start, x_end) := block([clock_sec, opt_clock_sec, clock_sec1, expect_sec, left_sec, percent_done, total_clock_sec], clock_sec1 : elapsed_time_seconds(), total_clock_sec : convfloat(clock_sec1) - convfloat(glob_orig_start_sec), glob_clock_sec : convfloat(clock_sec1) - convfloat(glob_clock_start_sec), left_sec : - convfloat(clock_sec1) + convfloat(glob_orig_start_sec) + convfloat(glob_max_sec), expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(clock_sec1) - convfloat(glob_orig_start_sec)), opt_clock_sec : convfloat(clock_sec1) - convfloat(glob_optimal_clock_start_sec), glob_optimal_expect_sec : comp_expect_sec(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x ), 1 convfloat(opt_clock_sec)), glob_total_exp_sec : total_clock_sec + glob_optimal_expect_sec, percent_done : comp_percent(convfloat(x_end), convfloat(x_start), convfloat(glob_h) + convfloat(array_x )), glob_percent_done : percent_done, 1 omniout_str_noeol(INFO, "Total Elapsed Time "), omniout_timestr(convfloat(total_clock_sec)), omniout_str_noeol(INFO, "Elapsed Time(since restart) "), omniout_timestr(convfloat(glob_clock_sec)), if convfloat(percent_done) < convfloat(100.0) then (omniout_str_noeol(INFO, "Expected Time Remaining "), omniout_timestr(convfloat(expect_sec)), omniout_str_noeol(INFO, "Optimized Time Remaining "), omniout_timestr(convfloat(glob_optimal_expect_sec)), omniout_str_noeol(INFO, "Expected Total Time "), omniout_timestr(convfloat(glob_total_exp_sec))), omniout_str_noeol(INFO, "Time to Timeout "), omniout_timestr(convfloat(left_sec)), omniout_float(INFO, "Percent Done ", 33, percent_done, 4, "%")) (%i10) check_for_pole() := block([cnt, dr1, dr2, ds1, ds2, hdrc, hdrc_BBB, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found_sing, h_new, ratio, term], n : glob_max_terms, m : - 1 - 1 + n, while (m >= 10) and ((omniabs(array_y_higher ) < glob_small_float glob_small_float) 1, m or (omniabs(array_y_higher ) < glob_small_float glob_small_float) 1, m - 1 or (omniabs(array_y_higher ) < glob_small_float glob_small_float)) do m 1, m - 2 array_y_higher 1, m : m - 1, if m > 10 then (rm0 : ----------------------, array_y_higher 1, m - 1 array_y_higher 1, m - 1 rm1 : ----------------------, hdrc : convfloat(m) rm0 - convfloat(m - 1) rm1, array_y_higher 1, m - 2 if omniabs(hdrc) > glob_small_float glob_small_float glob_h then (rcs : ------, ord_no : hdrc rm1 convfloat((m - 2) (m - 2)) - rm0 convfloat(m - 3) -----------------------------------------------------, hdrc array_real_pole : rcs, array_real_pole : ord_no) 1, 1 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float)) 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float), n : - 1 - 1 + glob_max_terms, 1, 2 cnt : 0, while (cnt < 5) and (n >= 10) do (if omniabs(array_y_higher ) > 1, n glob_small_float then cnt : 1 + cnt else cnt : 0, n : n - 1), m : cnt + n, if m <= 10 then (rad_c : glob_large_float, ord_no : glob_large_float) elseif ((omniabs(array_y_higher ) >= glob_large_float) 1, m or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 1 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 2 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 3 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 4 or (omniabs(array_y_higher ) >= glob_large_float)) 1, m - 5 or ((omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float)) 1, m 1, m - 1 1, m - 2 1, m - 3 1, m - 4 1, m - 5 then (rad_c : glob_large_float, ord_no : glob_large_float) array_y_higher array_y_higher 1, m 1, m - 1 else (rm0 : ----------------------, rm1 : ----------------------, array_y_higher array_y_higher 1, m - 1 1, m - 2 array_y_higher array_y_higher 1, m - 2 1, m - 3 rm2 : ----------------------, rm3 : ----------------------, array_y_higher array_y_higher 1, m - 3 1, m - 4 array_y_higher 1, m - 4 rm4 : ----------------------, nr1 : convfloat(m - 3) rm2 array_y_higher 1, m - 5 - 2.0 convfloat(m - 2) rm1 + convfloat(m - 1) rm0, nr2 : convfloat(m - 4) rm3 - 2.0 convfloat(m - 3) rm2 + convfloat(m - 2) rm1, - 1.0 2.0 - 1.0 - 1.0 2.0 - 1.0 5.0 8.0 3.0 dr1 : ----- + --- + -----, dr2 : ----- + --- + -----, ds1 : --- - --- + ---, rm3 rm2 rm1 rm4 rm3 rm2 rm3 rm2 rm1 5.0 8.0 3.0 ds2 : --- - --- + ---, if (omniabs(nr1 dr2 - nr2 dr1) <= glob_small_float) rm4 rm3 rm2 or (omniabs(dr1) <= glob_small_float) then (rad_c : glob_large_float, ord_no : glob_large_float) else (if omniabs(nr1 dr2 - nr2 dr1) > dr1 dr2 - ds2 dr1 + ds1 dr2 glob_small_float then (rcs : ---------------------------, nr1 dr2 - nr2 dr1 rcs nr1 - ds1 convfloat(m) ord_no : ------------- - ------------, 2.0 dr1 2.0 if omniabs(rcs) > glob_small_float then (if rcs > 0.0 then rad_c : sqrt(rcs) omniabs(glob_h) else rad_c : glob_large_float) else (rad_c : glob_large_float, ord_no : glob_large_float)) else (rad_c : glob_large_float, ord_no : glob_large_float)), array_complex_pole : rad_c, array_complex_pole : ord_no), 1, 1 1, 2 found_sing : 0, if (1 # found_sing) and ((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole # glob_large_float) and (array_complex_pole # glob_large_float)) 1, 1 1, 2 and ((array_complex_pole > 0.0) and (array_complex_pole > 0.0)) 1, 1 1, 2 then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , found_sing : 1, 1, 2 1, 2 array_type_pole : 2, if glob_display_flag 1 then (if reached_interval() then omniout_str(ALWAYS, "Complex estimate of poles used for equation 1"))), if (1 # found_sing) and ((array_real_pole # glob_large_float) 1, 1 and (array_real_pole # glob_large_float) and (array_real_pole > 0.0) 1, 2 1, 1 and (array_real_pole > - 1.0 glob_smallish_float) 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float) or (array_complex_pole <= 0.0) or (array_complex_pole <= 0.0))) 1, 1 1, 2 1, 1 1, 2 then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found_sing : 1, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then (if reached_interval() then omniout_str(ALWAYS, "Real estimate of pole used for equation 1"))), if (1 # found_sing) and (((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float))) 1, 1 1, 2 then (array_poles : glob_large_float, array_poles : glob_large_float, 1, 1 1, 2 found_sing : 1, array_type_pole : 3, if reached_interval() 1 then omniout_str(ALWAYS, "NO POLE for equation 1")), if (1 # found_sing) and ((array_real_pole < array_complex_pole ) 1, 1 1, 1 and (array_real_pole > 0.0) and (array_real_pole > - 1.0 1, 1 1, 2 glob_smallish_float)) then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found_sing : 1, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then (if reached_interval() then omniout_str(ALWAYS, "Real estimate of pole used for equation 1"))), if (1 # found_sing) and ((array_complex_pole # glob_large_float) 1, 1 and (array_complex_pole # glob_large_float) 1, 2 and (array_complex_pole > 0.0) and (array_complex_pole > 1, 1 1, 2 0.0)) then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , array_type_pole : 2, 1, 2 1, 2 1 found_sing : 1, if glob_display_flag then (if reached_interval() then omniout_str(ALWAYS, "Complex estimate of poles used for equation 1"))), if 1 # found_sing then (array_poles : glob_large_float, 1, 1 array_poles : glob_large_float, array_type_pole : 3, 1, 2 1 if reached_interval() then omniout_str(ALWAYS, "NO POLE for equation 1")), array_pole : glob_large_float, array_pole : glob_large_float, 1 2 if array_pole > array_poles then (array_pole : array_poles , 1 1, 1 1 1, 1 array_pole : array_poles ), if array_pole glob_ratio_of_radius < 2 1, 2 1 omniabs(glob_h) then (h_new : array_pole glob_ratio_of_radius, term : 1, 1 ratio : 1.0, while term <= glob_max_terms do (array_y : term array_y ratio, array_y_higher : array_y_higher ratio, term 1, term 1, term ratio h_new array_x : array_x ratio, ratio : ---------------, term : 1 + term), term term omniabs(glob_h) glob_h : h_new), if reached_interval() then display_pole()) (%o10) check_for_pole() := block([cnt, dr1, dr2, ds1, ds2, hdrc, hdrc_BBB, m, n, nr1, nr2, ord_no, rad_c, rcs, rm0, rm1, rm2, rm3, rm4, found_sing, h_new, ratio, term], n : glob_max_terms, m : - 1 - 1 + n, while (m >= 10) and ((omniabs(array_y_higher ) < glob_small_float glob_small_float) 1, m or (omniabs(array_y_higher ) < glob_small_float glob_small_float) 1, m - 1 or (omniabs(array_y_higher ) < glob_small_float glob_small_float)) do m 1, m - 2 array_y_higher 1, m : m - 1, if m > 10 then (rm0 : ----------------------, array_y_higher 1, m - 1 array_y_higher 1, m - 1 rm1 : ----------------------, hdrc : convfloat(m) rm0 - convfloat(m - 1) rm1, array_y_higher 1, m - 2 if omniabs(hdrc) > glob_small_float glob_small_float glob_h then (rcs : ------, ord_no : hdrc rm1 convfloat((m - 2) (m - 2)) - rm0 convfloat(m - 3) -----------------------------------------------------, hdrc array_real_pole : rcs, array_real_pole : ord_no) 1, 1 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float)) 1, 2 else (array_real_pole : glob_large_float, 1, 1 array_real_pole : glob_large_float), n : - 1 - 1 + glob_max_terms, 1, 2 cnt : 0, while (cnt < 5) and (n >= 10) do (if omniabs(array_y_higher ) > 1, n glob_small_float then cnt : 1 + cnt else cnt : 0, n : n - 1), m : cnt + n, if m <= 10 then (rad_c : glob_large_float, ord_no : glob_large_float) elseif ((omniabs(array_y_higher ) >= glob_large_float) 1, m or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 1 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 2 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 3 or (omniabs(array_y_higher ) >= glob_large_float) 1, m - 4 or (omniabs(array_y_higher ) >= glob_large_float)) 1, m - 5 or ((omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float) or (omniabs(array_y_higher ) <= glob_small_float)) 1, m 1, m - 1 1, m - 2 1, m - 3 1, m - 4 1, m - 5 then (rad_c : glob_large_float, ord_no : glob_large_float) array_y_higher array_y_higher 1, m 1, m - 1 else (rm0 : ----------------------, rm1 : ----------------------, array_y_higher array_y_higher 1, m - 1 1, m - 2 array_y_higher array_y_higher 1, m - 2 1, m - 3 rm2 : ----------------------, rm3 : ----------------------, array_y_higher array_y_higher 1, m - 3 1, m - 4 array_y_higher 1, m - 4 rm4 : ----------------------, nr1 : convfloat(m - 3) rm2 array_y_higher 1, m - 5 - 2.0 convfloat(m - 2) rm1 + convfloat(m - 1) rm0, nr2 : convfloat(m - 4) rm3 - 2.0 convfloat(m - 3) rm2 + convfloat(m - 2) rm1, - 1.0 2.0 - 1.0 - 1.0 2.0 - 1.0 5.0 8.0 3.0 dr1 : ----- + --- + -----, dr2 : ----- + --- + -----, ds1 : --- - --- + ---, rm3 rm2 rm1 rm4 rm3 rm2 rm3 rm2 rm1 5.0 8.0 3.0 ds2 : --- - --- + ---, if (omniabs(nr1 dr2 - nr2 dr1) <= glob_small_float) rm4 rm3 rm2 or (omniabs(dr1) <= glob_small_float) then (rad_c : glob_large_float, ord_no : glob_large_float) else (if omniabs(nr1 dr2 - nr2 dr1) > dr1 dr2 - ds2 dr1 + ds1 dr2 glob_small_float then (rcs : ---------------------------, nr1 dr2 - nr2 dr1 rcs nr1 - ds1 convfloat(m) ord_no : ------------- - ------------, 2.0 dr1 2.0 if omniabs(rcs) > glob_small_float then (if rcs > 0.0 then rad_c : sqrt(rcs) omniabs(glob_h) else rad_c : glob_large_float) else (rad_c : glob_large_float, ord_no : glob_large_float)) else (rad_c : glob_large_float, ord_no : glob_large_float)), array_complex_pole : rad_c, array_complex_pole : ord_no), 1, 1 1, 2 found_sing : 0, if (1 # found_sing) and ((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole # glob_large_float) and (array_complex_pole # glob_large_float)) 1, 1 1, 2 and ((array_complex_pole > 0.0) and (array_complex_pole > 0.0)) 1, 1 1, 2 then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , found_sing : 1, 1, 2 1, 2 array_type_pole : 2, if glob_display_flag 1 then (if reached_interval() then omniout_str(ALWAYS, "Complex estimate of poles used for equation 1"))), if (1 # found_sing) and ((array_real_pole # glob_large_float) 1, 1 and (array_real_pole # glob_large_float) and (array_real_pole > 0.0) 1, 2 1, 1 and (array_real_pole > - 1.0 glob_smallish_float) 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float) or (array_complex_pole <= 0.0) or (array_complex_pole <= 0.0))) 1, 1 1, 2 1, 1 1, 2 then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found_sing : 1, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then (if reached_interval() then omniout_str(ALWAYS, "Real estimate of pole used for equation 1"))), if (1 # found_sing) and (((array_real_pole = glob_large_float) 1, 1 or (array_real_pole = glob_large_float)) 1, 2 and ((array_complex_pole = glob_large_float) or (array_complex_pole = glob_large_float))) 1, 1 1, 2 then (array_poles : glob_large_float, array_poles : glob_large_float, 1, 1 1, 2 found_sing : 1, array_type_pole : 3, if reached_interval() 1 then omniout_str(ALWAYS, "NO POLE for equation 1")), if (1 # found_sing) and ((array_real_pole < array_complex_pole ) 1, 1 1, 1 and (array_real_pole > 0.0) and (array_real_pole > - 1.0 1, 1 1, 2 glob_smallish_float)) then (array_poles : array_real_pole , 1, 1 1, 1 array_poles : array_real_pole , found_sing : 1, array_type_pole : 1, 1, 2 1, 2 1 if glob_display_flag then (if reached_interval() then omniout_str(ALWAYS, "Real estimate of pole used for equation 1"))), if (1 # found_sing) and ((array_complex_pole # glob_large_float) 1, 1 and (array_complex_pole # glob_large_float) 1, 2 and (array_complex_pole > 0.0) and (array_complex_pole > 1, 1 1, 2 0.0)) then (array_poles : array_complex_pole , 1, 1 1, 1 array_poles : array_complex_pole , array_type_pole : 2, 1, 2 1, 2 1 found_sing : 1, if glob_display_flag then (if reached_interval() then omniout_str(ALWAYS, "Complex estimate of poles used for equation 1"))), if 1 # found_sing then (array_poles : glob_large_float, 1, 1 array_poles : glob_large_float, array_type_pole : 3, 1, 2 1 if reached_interval() then omniout_str(ALWAYS, "NO POLE for equation 1")), array_pole : glob_large_float, array_pole : glob_large_float, 1 2 if array_pole > array_poles then (array_pole : array_poles , 1 1, 1 1 1, 1 array_pole : array_poles ), if array_pole glob_ratio_of_radius < 2 1, 2 1 omniabs(glob_h) then (h_new : array_pole glob_ratio_of_radius, term : 1, 1 ratio : 1.0, while term <= glob_max_terms do (array_y : term array_y ratio, array_y_higher : array_y_higher ratio, term 1, term 1, term ratio h_new array_x : array_x ratio, ratio : ---------------, term : 1 + term), term term omniabs(glob_h) glob_h : h_new), if reached_interval() then display_pole()) (%i11) get_norms() := block([iii], if not glob_initial_pass then (iii : 1, while iii <= glob_max_terms do (array_norms : 0.0, iii iii : 1 + iii), iii : 1, while iii <= glob_max_terms do (if omniabs(array_y ) > array_norms iii iii then array_norms : omniabs(array_y ), iii : 1 + iii))) iii iii (%o11) get_norms() := block([iii], if not glob_initial_pass then (iii : 1, while iii <= glob_max_terms do (array_norms : 0.0, iii iii : 1 + iii), iii : 1, while iii <= glob_max_terms do (if omniabs(array_y ) > array_norms iii iii then array_norms : omniabs(array_y ), iii : 1 + iii))) iii iii (%i12) atomall() := block([kkk, order_d, adj2, adj3, temporary, term, temp, temp2], array_tmp1 : array_const_0D1 array_x , 1 1 1 array_tmp2 : array_const_0D2 + array_tmp1 , array_tmp3 : sqrt(array_tmp2 ), 1 1 1 1 1 array_tmp4 : ln(array_tmp3 ), array_tmp5 : array_tmp4 + array_const_0D0 , 1 1 1 1 1 if not array_y_set_initial then (if 1 <= glob_max_terms 1, 2 then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(0, 1), 1 array_y : temporary, array_y_higher : temporary, 2 1, 2 temporary 1.0 temporary : -------------, array_y_higher : temporary, 0)), kkk : 2, glob_h 2, 1 array_tmp1 : array_const_0D1 array_x , array_tmp2 : array_tmp1 , 2 1 2 2 2 array_tmp2 2 ----------- array_tmp3 array_tmp3 1 2 array_tmp3 : -----------, array_tmp4 : -----------, 2 2.0 2 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 2 2 1, 3 then (if 2 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(1, 2), array_y : temporary, 2 3 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 3 glob_h array_y_higher : temporary, 0)), kkk : 3, array_tmp3 : 0.0, 2, 2 3 - ats(3, array_tmp3, array_tmp3, 2) ----------------------------------- array_tmp3 1 array_tmp3 : -----------------------------------, 3 2.0 array_tmp3 - att(2, array_tmp3, array_tmp4, 2) 3 array_tmp4 : -----------------------------------------------, 3 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 3 3 1, 4 then (if 3 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(2, 3), array_y : temporary, 3 4 temporary 3.0 array_y_higher : temporary, temporary : -------------, 1, 4 glob_h array_y_higher : temporary, 0)), kkk : 4, array_tmp3 : 0.0, 2, 3 4 - ats(4, array_tmp3, array_tmp3, 2) ----------------------------------- array_tmp3 1 array_tmp3 : -----------------------------------, 4 2.0 array_tmp3 - att(3, array_tmp3, array_tmp4, 2) 4 array_tmp4 : -----------------------------------------------, 4 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 4 4 1, 5 then (if 4 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(3, 4), array_y : temporary, 4 5 temporary 4.0 array_y_higher : temporary, temporary : -------------, 1, 5 glob_h array_y_higher : temporary, 0)), kkk : 5, array_tmp3 : 0.0, 2, 4 5 - ats(5, array_tmp3, array_tmp3, 2) ----------------------------------- array_tmp3 1 array_tmp3 : -----------------------------------, 5 2.0 array_tmp3 - att(4, array_tmp3, array_tmp4, 2) 5 array_tmp4 : -----------------------------------------------, 5 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 5 5 1, 6 then (if 5 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(4, 5), array_y : temporary, 5 6 temporary 5.0 array_y_higher : temporary, temporary : -------------, 1, 6 glob_h array_y_higher : temporary, 0)), kkk : 6, 2, 5 while kkk <= glob_max_terms do (array_tmp3 : 0.0, kkk - ats(kkk, array_tmp3, array_tmp3, 2) ------------------------------------- array_tmp3 1 array_tmp3 : -------------------------------------, kkk 2.0 array_tmp3 - att(kkk - 1, array_tmp3, array_tmp4, 2) kkk array_tmp4 : -------------------------------------------------------, kkk array_tmp3 1 array_tmp5 : array_tmp4 , order_d : 1, kkk kkk if 1 + order_d + kkk <= glob_max_terms then (if not array_y_set_initial 1, order_d + kkk then (temporary : array_tmp5 expt(glob_h, order_d) kkk factorial_3(kkk - 1, - 1 + order_d + kkk), array_y : temporary, order_d + kkk array_y_higher : temporary, term : - 1 + order_d + kkk, 1, order_d + kkk adj2 : - 1 + order_d + kkk, adj3 : 2, while term >= 1 do (if adj3 <= 1 + order_d then (if adj2 > 0 temporary convfp(adj2) then temporary : ---------------------- else temporary : temporary, glob_h array_y_higher : temporary), term : term - 1, adj2 : adj2 - 1, adj3, term adj3 : 1 + adj3))), kkk : 1 + kkk)) (%o12) atomall() := block([kkk, order_d, adj2, adj3, temporary, term, temp, temp2], array_tmp1 : array_const_0D1 array_x , 1 1 1 array_tmp2 : array_const_0D2 + array_tmp1 , array_tmp3 : sqrt(array_tmp2 ), 1 1 1 1 1 array_tmp4 : ln(array_tmp3 ), array_tmp5 : array_tmp4 + array_const_0D0 , 1 1 1 1 1 if not array_y_set_initial then (if 1 <= glob_max_terms 1, 2 then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(0, 1), 1 array_y : temporary, array_y_higher : temporary, 2 1, 2 temporary 1.0 temporary : -------------, array_y_higher : temporary, 0)), kkk : 2, glob_h 2, 1 array_tmp1 : array_const_0D1 array_x , array_tmp2 : array_tmp1 , 2 1 2 2 2 array_tmp2 2 ----------- array_tmp3 array_tmp3 1 2 array_tmp3 : -----------, array_tmp4 : -----------, 2 2.0 2 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 2 2 1, 3 then (if 2 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(1, 2), array_y : temporary, 2 3 temporary 2.0 array_y_higher : temporary, temporary : -------------, 1, 3 glob_h array_y_higher : temporary, 0)), kkk : 3, array_tmp3 : 0.0, 2, 2 3 - ats(3, array_tmp3, array_tmp3, 2) ----------------------------------- array_tmp3 1 array_tmp3 : -----------------------------------, 3 2.0 array_tmp3 - att(2, array_tmp3, array_tmp4, 2) 3 array_tmp4 : -----------------------------------------------, 3 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 3 3 1, 4 then (if 3 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(2, 3), array_y : temporary, 3 4 temporary 3.0 array_y_higher : temporary, temporary : -------------, 1, 4 glob_h array_y_higher : temporary, 0)), kkk : 4, array_tmp3 : 0.0, 2, 3 4 - ats(4, array_tmp3, array_tmp3, 2) ----------------------------------- array_tmp3 1 array_tmp3 : -----------------------------------, 4 2.0 array_tmp3 - att(3, array_tmp3, array_tmp4, 2) 4 array_tmp4 : -----------------------------------------------, 4 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 4 4 1, 5 then (if 4 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(3, 4), array_y : temporary, 4 5 temporary 4.0 array_y_higher : temporary, temporary : -------------, 1, 5 glob_h array_y_higher : temporary, 0)), kkk : 5, array_tmp3 : 0.0, 2, 4 5 - ats(5, array_tmp3, array_tmp3, 2) ----------------------------------- array_tmp3 1 array_tmp3 : -----------------------------------, 5 2.0 array_tmp3 - att(4, array_tmp3, array_tmp4, 2) 5 array_tmp4 : -----------------------------------------------, 5 array_tmp3 1 array_tmp5 : array_tmp4 , if not array_y_set_initial 5 5 1, 6 then (if 5 <= glob_max_terms then (temporary : array_tmp5 expt(glob_h, 1) factorial_3(4, 5), array_y : temporary, 5 6 temporary 5.0 array_y_higher : temporary, temporary : -------------, 1, 6 glob_h array_y_higher : temporary, 0)), kkk : 6, 2, 5 while kkk <= glob_max_terms do (array_tmp3 : 0.0, kkk - ats(kkk, array_tmp3, array_tmp3, 2) ------------------------------------- array_tmp3 1 array_tmp3 : -------------------------------------, kkk 2.0 array_tmp3 - att(kkk - 1, array_tmp3, array_tmp4, 2) kkk array_tmp4 : -------------------------------------------------------, kkk array_tmp3 1 array_tmp5 : array_tmp4 , order_d : 1, kkk kkk if 1 + order_d + kkk <= glob_max_terms then (if not array_y_set_initial 1, order_d + kkk then (temporary : array_tmp5 expt(glob_h, order_d) kkk factorial_3(kkk - 1, - 1 + order_d + kkk), array_y : temporary, order_d + kkk array_y_higher : temporary, term : - 1 + order_d + kkk, 1, order_d + kkk adj2 : - 1 + order_d + kkk, adj3 : 2, while term >= 1 do (if adj3 <= 1 + order_d then (if adj2 > 0 temporary convfp(adj2) then temporary : ---------------------- else temporary : temporary, glob_h array_y_higher : temporary), term : term - 1, adj2 : adj2 - 1, adj3, term adj3 : 1 + adj3))), kkk : 1 + kkk)) log(x) (%i13) log10(x) := --------- log(10.0) log(x) (%o13) log10(x) := --------- log(10.0) (%i14) omniout_str(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a~%", string(str)) (%o14) omniout_str(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a~%", string(str)) (%i15) omniout_str_noeol(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a", string(str)) (%o15) omniout_str_noeol(iolevel, str) := if glob_iolevel >= iolevel then printf(true, "~a", string(str)) (%i16) omniout_labstr(iolevel, label, str) := if glob_iolevel >= iolevel then printf(true, "~a = ~a~%", string(label), string(str)) (%o16) omniout_labstr(iolevel, label, str) := if glob_iolevel >= iolevel then printf(true, "~a = ~a~%", string(label), string(str)) (%i17) omniout_float(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (if vallen = 4 then printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel) else printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel)) (%o17) omniout_float(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (if vallen = 4 then printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel) else printf(true, "~a = ~g ~s ~%", prelabel, value, postlabel)) (%i18) omniout_int(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (printf(true, "~a = ~d ~a~%", prelabel, value, postlabel), newline()) (%o18) omniout_int(iolevel, prelabel, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (printf(true, "~a = ~d ~a~%", prelabel, value, postlabel), newline()) (%i19) omniout_float_arr(iolevel, prelabel, elemnt, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (sprint(prelabel, "[", elemnt, "]=", value, postlabel), newline()) (%o19) omniout_float_arr(iolevel, prelabel, elemnt, prelen, value, vallen, postlabel) := if glob_iolevel >= iolevel then (sprint(prelabel, "[", elemnt, "]=", value, postlabel), newline()) (%i20) dump_series(iolevel, dump_label, series_name, arr_series, numb) := block([i], if glob_iolevel >= iolevel then (i : 1, while i <= numb do (sprint(dump_label, series_name, "i = ", i, "series = ", array_series ), newline(), i : 1 + i))) i (%o20) dump_series(iolevel, dump_label, series_name, arr_series, numb) := block([i], if glob_iolevel >= iolevel then (i : 1, while i <= numb do (sprint(dump_label, series_name, "i = ", i, "series = ", array_series ), newline(), i : 1 + i))) i (%i21) dump_series_2(iolevel, dump_label, series_name2, arr_series2, numb, subnum, arr_x) := (array_series2, numb, subnum) := block([i, sub, ts_term], if glob_iolevel >= iolevel then (sub : 1, while sub <= subnum do (i : 1, while i <= num do (sprint(dump_label, series_name, "sub = ", sub, "i = ", i, "series2 = ", array_series2 ), i : 1 + i), sub : 1 + sub))) sub, i (%o21) dump_series_2(iolevel, dump_label, series_name2, arr_series2, numb, subnum, arr_x) := (array_series2, numb, subnum) := block([i, sub, ts_term], if glob_iolevel >= iolevel then (sub : 1, while sub <= subnum do (i : 1, while i <= num do (sprint(dump_label, series_name, "sub = ", sub, "i = ", i, "series2 = ", array_series2 ), i : 1 + i), sub : 1 + sub))) sub, i (%i22) cs_info(iolevel, str) := if glob_iolevel >= iolevel then sprint(concat("cs_info ", str, " glob_correct_start_flag = ", glob_correct_start_flag, "glob_h := ", glob_h, "glob_reached_optimal_h := ", glob_reached_optimal_h)) (%o22) cs_info(iolevel, str) := if glob_iolevel >= iolevel then sprint(concat("cs_info ", str, " glob_correct_start_flag = ", glob_correct_start_flag, "glob_h := ", glob_h, "glob_reached_optimal_h := ", glob_reached_optimal_h)) (%i23) logitem_time(fd, secs_in) := block([days, days_int, hours, hours_int, minutes, minutes_int, sec_int, seconds, secs, years, years_int], secs : convfloat(secs_in), printf(fd, "~%"), secs if secs >= 0 then (years_int : trunc(----------------), glob_sec_in_year sec_temp : mod(trunc(secs), trunc(glob_sec_in_year)), sec_temp days_int : trunc(---------------), sec_temp : glob_sec_in_day sec_temp mod(sec_temp, trunc(glob_sec_in_day)), hours_int : trunc(----------------), glob_sec_in_hour sec_temp : mod(sec_temp, trunc(glob_sec_in_hour)), sec_temp minutes_int : trunc(------------------), glob_sec_in_minute sec_int : mod(sec_temp, trunc(glob_sec_in_minute)), if years_int > 0 then printf(fd, "= ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(fd, "= ~d Days ~d Hours ~d Minutes ~d Seconds~%", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(fd, "= ~d Hours ~d Minutes ~d Seconds~%", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(fd, "= ~d Minutes ~d Seconds~%", minutes_int, sec_int) else printf(fd, "= ~d Seconds~%", sec_int)) else printf(fd, " Unknown~%"), printf(fd, "~%")) (%o23) logitem_time(fd, secs_in) := block([days, days_int, hours, hours_int, minutes, minutes_int, sec_int, seconds, secs, years, years_int], secs : convfloat(secs_in), printf(fd, "~%"), secs if secs >= 0 then (years_int : trunc(----------------), glob_sec_in_year sec_temp : mod(trunc(secs), trunc(glob_sec_in_year)), sec_temp days_int : trunc(---------------), sec_temp : glob_sec_in_day sec_temp mod(sec_temp, trunc(glob_sec_in_day)), hours_int : trunc(----------------), glob_sec_in_hour sec_temp : mod(sec_temp, trunc(glob_sec_in_hour)), sec_temp minutes_int : trunc(------------------), glob_sec_in_minute sec_int : mod(sec_temp, trunc(glob_sec_in_minute)), if years_int > 0 then printf(fd, "= ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(fd, "= ~d Days ~d Hours ~d Minutes ~d Seconds~%", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(fd, "= ~d Hours ~d Minutes ~d Seconds~%", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(fd, "= ~d Minutes ~d Seconds~%", minutes_int, sec_int) else printf(fd, "= ~d Seconds~%", sec_int)) else printf(fd, " Unknown~%"), printf(fd, "~%")) (%i24) omniout_timestr(secs_in) := block([days, days_int, hours, hours_int, minutes, minutes_int, sec_int, seconds, secs, years, years_int], secs : convfloat(secs_in), if secs >= 0 secs then (years_int : trunc(----------------), glob_sec_in_year sec_temp : mod(trunc(secs), trunc(glob_sec_in_year)), sec_temp days_int : trunc(---------------), sec_temp : glob_sec_in_day sec_temp mod(sec_temp, trunc(glob_sec_in_day)), hours_int : trunc(----------------), glob_sec_in_hour sec_temp : mod(sec_temp, trunc(glob_sec_in_hour)), sec_temp minutes_int : trunc(------------------), glob_sec_in_minute sec_int : mod(sec_temp, trunc(glob_sec_in_minute)), if years_int > 0 then printf(true, "= ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(true, "= ~d Days ~d Hours ~d Minutes ~d Seconds~%", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(true, "= ~d Hours ~d Minutes ~d Seconds~%", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(true, "= ~d Minutes ~d Seconds~%", minutes_int, sec_int) else printf(true, "= ~d Seconds~%", sec_int)) else printf(true, " Unknown~%")) (%o24) omniout_timestr(secs_in) := block([days, days_int, hours, hours_int, minutes, minutes_int, sec_int, seconds, secs, years, years_int], secs : convfloat(secs_in), if secs >= 0 secs then (years_int : trunc(----------------), glob_sec_in_year sec_temp : mod(trunc(secs), trunc(glob_sec_in_year)), sec_temp days_int : trunc(---------------), sec_temp : glob_sec_in_day sec_temp mod(sec_temp, trunc(glob_sec_in_day)), hours_int : trunc(----------------), glob_sec_in_hour sec_temp : mod(sec_temp, trunc(glob_sec_in_hour)), sec_temp minutes_int : trunc(------------------), glob_sec_in_minute sec_int : mod(sec_temp, trunc(glob_sec_in_minute)), if years_int > 0 then printf(true, "= ~d Years ~d Days ~d Hours ~d Minutes ~d Seconds~%", years_int, days_int, hours_int, minutes_int, sec_int) elseif days_int > 0 then printf(true, "= ~d Days ~d Hours ~d Minutes ~d Seconds~%", days_int, hours_int, minutes_int, sec_int) elseif hours_int > 0 then printf(true, "= ~d Hours ~d Minutes ~d Seconds~%", hours_int, minutes_int, sec_int) elseif minutes_int > 0 then printf(true, "= ~d Minutes ~d Seconds~%", minutes_int, sec_int) else printf(true, "= ~d Seconds~%", sec_int)) else printf(true, " Unknown~%")) (%i25) ats(mmm_ats, arr_a, arr_b, jjj_ats) := block([iii_ats, lll_ats, ma_ats, ret_ats], ret_ats : 0.0, if jjj_ats <= mmm_ats then (ma_ats : 1 + mmm_ats, iii_ats : jjj_ats, while iii_ats <= mmm_ats do (lll_ats : ma_ats - iii_ats, ret_ats : arr_a arr_b + ret_ats, iii_ats : 1 + iii_ats)), iii_ats lll_ats ret_ats) (%o25) ats(mmm_ats, arr_a, arr_b, jjj_ats) := block([iii_ats, lll_ats, ma_ats, ret_ats], ret_ats : 0.0, if jjj_ats <= mmm_ats then (ma_ats : 1 + mmm_ats, iii_ats : jjj_ats, while iii_ats <= mmm_ats do (lll_ats : ma_ats - iii_ats, ret_ats : arr_a arr_b + ret_ats, iii_ats : 1 + iii_ats)), iii_ats lll_ats ret_ats) (%i26) att(mmm_att, arr_aa, arr_bb, jjj_att) := block([al_att, iii_att, lll_att, ma_att, ret_att], ret_att : 0.0, if jjj_att <= mmm_att then (ma_att : 2 + mmm_att, iii_att : jjj_att, while iii_att <= mmm_att do (lll_att : ma_att - iii_att, al_att : lll_att - 1, if lll_att <= glob_max_terms then ret_att : arr_aa arr_bb convfp(al_att) + ret_att, iii_att lll_att ret_att iii_att : 1 + iii_att), ret_att : ---------------), ret_att) convfp(mmm_att) (%o26) att(mmm_att, arr_aa, arr_bb, jjj_att) := block([al_att, iii_att, lll_att, ma_att, ret_att], ret_att : 0.0, if jjj_att <= mmm_att then (ma_att : 2 + mmm_att, iii_att : jjj_att, while iii_att <= mmm_att do (lll_att : ma_att - iii_att, al_att : lll_att - 1, if lll_att <= glob_max_terms then ret_att : arr_aa arr_bb convfp(al_att) + ret_att, iii_att lll_att ret_att iii_att : 1 + iii_att), ret_att : ---------------), ret_att) convfp(mmm_att) (%i27) display_pole_debug(typ, radius, order2) := (if typ = 1 then omniout_str(ALWAYS, "Real") else omniout_str(ALWAYS, "Complex"), omniout_float(ALWAYS, "DBG Radius of convergence ", 4, radius, 4, " "), omniout_float(ALWAYS, "DBG Order of pole ", 4, order2, 4, " ")) (%o27) display_pole_debug(typ, radius, order2) := (if typ = 1 then omniout_str(ALWAYS, "Real") else omniout_str(ALWAYS, "Complex"), omniout_float(ALWAYS, "DBG Radius of convergence ", 4, radius, 4, " "), omniout_float(ALWAYS, "DBG Order of pole ", 4, order2, 4, " ")) (%i28) display_pole() := if (array_pole # glob_large_float) 1 and (array_pole > 0.0) and (array_pole # glob_large_float) 1 2 and (array_pole > 0.0) and glob_display_flag 2 then (omniout_float(ALWAYS, "Radius of convergence ", 4, array_pole , 4, " "), omniout_float(ALWAYS, 1 "Order of pole ", 4, array_pole , 4, " ")) 2 (%o28) display_pole() := if (array_pole # glob_large_float) 1 and (array_pole > 0.0) and (array_pole # glob_large_float) 1 2 and (array_pole > 0.0) and glob_display_flag 2 then (omniout_float(ALWAYS, "Radius of convergence ", 4, array_pole , 4, " "), omniout_float(ALWAYS, 1 "Order of pole ", 4, array_pole , 4, " ")) 2 (%i29) logditto(file) := (printf(file, ""), printf(file, "ditto"), printf(file, "")) (%o29) logditto(file) := (printf(file, ""), printf(file, "ditto"), printf(file, "")) (%i30) logitem_integer(file, n) := (printf(file, ""), printf(file, "~d", n), printf(file, "")) (%o30) logitem_integer(file, n) := (printf(file, ""), printf(file, "~d", n), printf(file, "")) (%i31) logitem_str(file, str) := (printf(file, ""), printf(file, str), printf(file, "")) (%o31) logitem_str(file, str) := (printf(file, ""), printf(file, str), printf(file, "")) (%i32) logitem_good_digits(file, rel_error) := block([good_digits], printf(file, ""), if rel_error # - 1.0 then (if rel_error > + 1.0E-34 then (good_digits : 1 - floor(log10(rel_error)), printf(file, "~d", good_digits)) else (good_digits : 16, printf(file, "~d", good_digits))) else printf(file, "Unknown"), printf(file, "")) (%o32) logitem_good_digits(file, rel_error) := block([good_digits], printf(file, ""), if rel_error # - 1.0 then (if rel_error > + 1.0E-34 then (good_digits : 1 - floor(log10(rel_error)), printf(file, "~d", good_digits)) else (good_digits : 16, printf(file, "~d", good_digits))) else printf(file, "Unknown"), printf(file, "")) (%i33) log_revs(file, revs) := printf(file, revs) (%o33) log_revs(file, revs) := printf(file, revs) (%i34) logitem_float(file, x) := (printf(file, ""), printf(file, "~g", x), printf(file, "")) (%o34) logitem_float(file, x) := (printf(file, ""), printf(file, "~g", x), printf(file, "")) (%i35) logitem_pole(file, pole) := (printf(file, ""), if pole = 0 then printf(file, "NA") elseif pole = 1 then printf(file, "Real") elseif pole = 2 then printf(file, "Complex") else printf(file, "No Pole"), printf(file, "")) (%o35) logitem_pole(file, pole) := (printf(file, ""), if pole = 0 then printf(file, "NA") elseif pole = 1 then printf(file, "Real") elseif pole = 2 then printf(file, "Complex") else printf(file, "No Pole"), printf(file, "")) (%i36) logstart(file) := printf(file, "") (%o36) logstart(file) := printf(file, "") (%i37) logend(file) := printf(file, "~%") (%o37) logend(file) := printf(file, "~%") (%i38) chk_data() := block([errflag], errflag : false, if (glob_max_terms < 15) or (glob_max_terms > 512) then (omniout_str(ALWAYS, "Illegal max_terms = -- Using 30"), glob_max_terms : 30), if glob_max_iter < 2 then (omniout_str(ALWAYS, "Illegal max_iter"), errflag : true), if errflag then quit()) (%o38) chk_data() := block([errflag], errflag : false, if (glob_max_terms < 15) or (glob_max_terms > 512) then (omniout_str(ALWAYS, "Illegal max_terms = -- Using 30"), glob_max_terms : 30), if glob_max_iter < 2 then (omniout_str(ALWAYS, "Illegal max_iter"), errflag : true), if errflag then quit()) (%i39) comp_expect_sec(t_end2, t_start2, t2, clock_sec2) := block([ms2, rrr, sec_left, sub1, sub2], ms2 : clock_sec2, sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, if sub1 = 0.0 then sec_left : 0.0 else (if sub2 > 0.0 sub1 then (rrr : ----, sec_left : rrr ms2 - ms2) else sec_left : 0.0), sec_left) sub2 (%o39) comp_expect_sec(t_end2, t_start2, t2, clock_sec2) := block([ms2, rrr, sec_left, sub1, sub2], ms2 : clock_sec2, sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, if sub1 = 0.0 then sec_left : 0.0 else (if sub2 > 0.0 sub1 then (rrr : ----, sec_left : rrr ms2 - ms2) else sec_left : 0.0), sec_left) sub2 (%i40) comp_percent(t_end2, t_start2, t2) := block([rrr, sub1, sub2], sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, 100.0 sub2 if sub2 > glob_small_float then rrr : ---------- else rrr : 0.0, rrr) sub1 (%o40) comp_percent(t_end2, t_start2, t2) := block([rrr, sub1, sub2], sub1 : t_end2 - t_start2, sub2 : t2 - t_start2, 100.0 sub2 if sub2 > glob_small_float then rrr : ---------- else rrr : 0.0, rrr) sub1 (%i41) factorial_2(nnn) := nnn! (%o41) factorial_2(nnn) := nnn! (%i42) factorial_1(nnn) := block([ret], if nnn <= glob_max_terms then (if array_fact_1 = 0 nnn then (ret : factorial_2(nnn), array_fact_1 : ret) nnn else ret : array_fact_1 ) else ret : factorial_2(nnn), ret) nnn (%o42) factorial_1(nnn) := block([ret], if nnn <= glob_max_terms then (if array_fact_1 = 0 nnn then (ret : factorial_2(nnn), array_fact_1 : ret) nnn else ret : array_fact_1 ) else ret : factorial_2(nnn), ret) nnn (%i43) factorial_3(mmm, nnn) := block([ret], if (nnn <= glob_max_terms) and (mmm <= glob_max_terms) factorial_1(mmm) then (if array_fact_2 = 0 then (ret : ----------------, mmm, nnn factorial_1(nnn) array_fact_2 : ret) else ret : array_fact_2 ) mmm, nnn mmm, nnn factorial_2(mmm) else ret : ----------------, ret) factorial_2(nnn) (%o43) factorial_3(mmm, nnn) := block([ret], if (nnn <= glob_max_terms) and (mmm <= glob_max_terms) factorial_1(mmm) then (if array_fact_2 = 0 then (ret : ----------------, mmm, nnn factorial_1(nnn) array_fact_2 : ret) else ret : array_fact_2 ) mmm, nnn mmm, nnn factorial_2(mmm) else ret : ----------------, ret) factorial_2(nnn) (%i44) convfp(mmm) := mmm (%o44) convfp(mmm) := mmm (%i45) convfloat(mmm) := mmm (%o45) convfloat(mmm) := mmm (%i46) elapsed_time_seconds() := block([t], t : elapsed_real_time(), t) (%o46) elapsed_time_seconds() := block([t], t : elapsed_real_time(), t) (%i47) Si(x) := 0.0 (%o47) Si(x) := 0.0 (%i48) Ci(x) := 0.0 (%o48) Ci(x) := 0.0 (%i49) ln(x) := log(x) (%o49) ln(x) := log(x) (%i50) arcsin(x) := asin(x) (%o50) arcsin(x) := asin(x) (%i51) arccos(x) := acos(x) (%o51) arccos(x) := acos(x) (%i52) arctan(x) := atan(x) (%o52) arctan(x) := atan(x) (%i53) omniabs(x) := abs(x) (%o53) omniabs(x) := abs(x) (%i54) expt(x, y) := (if (x = 0.0) and (y < 0.0) y then print("expt error x = ", x, "y = ", y), x ) (%o54) expt(x, y) := (if (x = 0.0) and (y < 0.0) y then print("expt error x = ", x, "y = ", y), x ) (%i55) estimated_needed_step_error(x_start, x_end, estimated_h, estimated_answer) := block([desired_abs_gbl_error, range, estimated_steps, step_error], omniout_float(ALWAYS, "glob_desired_digits_correct", 32, glob_desired_digits_correct, 32, ""), desired_abs_gbl_error : expt(10.0, - glob_desired_digits_correct) omniabs(estimated_answer), omniout_float(ALWAYS, "desired_abs_gbl_error", 32, desired_abs_gbl_error, 32, ""), range : x_end - x_start, omniout_float(ALWAYS, "range", 32, range, 32, range ""), estimated_steps : -----------, omniout_float(ALWAYS, "estimated_steps", estimated_h desired_abs_gbl_error 32, estimated_steps, 32, ""), step_error : omniabs(---------------------), estimated_steps omniout_float(ALWAYS, "step_error", 32, step_error, 32, ""), step_error) (%o55) estimated_needed_step_error(x_start, x_end, estimated_h, estimated_answer) := block([desired_abs_gbl_error, range, estimated_steps, step_error], omniout_float(ALWAYS, "glob_desired_digits_correct", 32, glob_desired_digits_correct, 32, ""), desired_abs_gbl_error : expt(10.0, - glob_desired_digits_correct) omniabs(estimated_answer), omniout_float(ALWAYS, "desired_abs_gbl_error", 32, desired_abs_gbl_error, 32, ""), range : x_end - x_start, omniout_float(ALWAYS, "range", 32, range, 32, range ""), estimated_steps : -----------, omniout_float(ALWAYS, "estimated_steps", estimated_h desired_abs_gbl_error 32, estimated_steps, 32, ""), step_error : omniabs(---------------------), estimated_steps omniout_float(ALWAYS, "step_error", 32, step_error, 32, ""), step_error) (%i56) exact_soln_y(x) := block(- 1.0 - 0.5 x + 5.0 ln(0.2 + 0.1 x) (0.2 + 0.1 x)) (%o56) exact_soln_y(x) := block(- 1.0 - 0.5 x + 5.0 ln(0.2 + 0.1 x) (0.2 + 0.1 x)) (%i57) main() := block([d1, d2, d3, d4, est_err_2, niii, done_once, term, ord, order_diff, term_no, html_log_file, iiif, jjjf, rows, r_order, sub_iter, calc_term, iii, temp_sum, current_iter, x_start, x_end, it, max_terms, opt_iter, tmp, subiter, est_needed_step_err, value3, min_value, est_answer, best_h, found_h, repeat_it], define_variable(glob_max_terms, 30, fixnum), define_variable(glob_iolevel, 5, fixnum), define_variable(ALWAYS, 1, fixnum), define_variable(INFO, 2, fixnum), define_variable(DEBUGL, 3, fixnum), define_variable(DEBUGMASSIVE, 4, fixnum), define_variable(MAX_UNCHANGED, 10, fixnum), define_variable(glob_check_sign, 1.0, float), define_variable(glob_desired_digits_correct, 8.0, float), define_variable(glob_max_value3, 0.0, float), define_variable(glob_ratio_of_radius, 0.01, float), define_variable(glob_percent_done, 0.0, float), define_variable(glob_subiter_method, 3, fixnum), define_variable(glob_total_exp_sec, 0.1, float), define_variable(glob_optimal_expect_sec, 0.1, float), define_variable(glob_html_log, true, boolean), define_variable(glob_good_digits, 0, fixnum), define_variable(glob_max_opt_iter, 10, fixnum), define_variable(glob_dump, false, boolean), define_variable(glob_djd_debug, true, boolean), define_variable(glob_display_flag, true, boolean), define_variable(glob_djd_debug2, true, boolean), define_variable(glob_sec_in_minute, 60, fixnum), define_variable(glob_min_in_hour, 60, fixnum), define_variable(glob_hours_in_day, 24, fixnum), define_variable(glob_days_in_year, 365, fixnum), define_variable(glob_sec_in_hour, 3600, fixnum), define_variable(glob_sec_in_day, 86400, fixnum), define_variable(glob_sec_in_year, 31536000, fixnum), define_variable(glob_almost_1, 0.999, float), define_variable(glob_clock_sec, 0.0, float), define_variable(glob_clock_start_sec, 0.0, float), define_variable(glob_not_yet_finished, true, boolean), define_variable(glob_initial_pass, true, boolean), define_variable(glob_not_yet_start_msg, true, boolean), define_variable(glob_reached_optimal_h, false, boolean), define_variable(glob_optimal_done, false, boolean), define_variable(glob_disp_incr, 0.1, float), define_variable(glob_h, 0.1, float), define_variable(glob_max_h, 0.1, float), define_variable(glob_large_float, 9.0E+100, float), define_variable(glob_last_good_h, 0.1, float), define_variable(glob_look_poles, false, boolean), define_variable(glob_neg_h, false, boolean), define_variable(glob_display_interval, 0.0, float), define_variable(glob_next_display, 0.0, float), define_variable(glob_dump_analytic, false, boolean), define_variable(glob_abserr, 1.0E-11, float), define_variable(glob_relerr, 1.0E-11, float), define_variable(glob_max_hours, 0.0, float), define_variable(glob_max_iter, 1000, fixnum), define_variable(glob_max_rel_trunc_err, 1.0E-11, float), define_variable(glob_max_trunc_err, 1.0E-11, float), define_variable(glob_no_eqs, 0, fixnum), define_variable(glob_optimal_clock_start_sec, 0.0, float), define_variable(glob_optimal_start, 0.0, float), define_variable(glob_small_float, 1.0E-201, float), define_variable(glob_smallish_float, 1.0E-101, float), define_variable(glob_unchanged_h_cnt, 0, fixnum), define_variable(glob_warned, false, boolean), define_variable(glob_warned2, false, boolean), define_variable(glob_max_sec, 10000.0, float), define_variable(glob_orig_start_sec, 0.0, float), define_variable(glob_start, 0, fixnum), define_variable(glob_curr_iter_when_opt, 0, fixnum), define_variable(glob_current_iter, 0, fixnum), define_variable(glob_iter, 0, fixnum), define_variable(glob_normmax, 0.0, float), define_variable(glob_max_minutes, 0.0, float), ALWAYS : 1, INFO : 2, DEBUGL : 3, DEBUGMASSIVE : 4, glob_iolevel : INFO, glob_orig_start_sec : elapsed_time_seconds(), MAX_UNCHANGED : 10, glob_curr_iter_when_opt : 0, glob_display_flag : true, glob_no_eqs : 1, glob_iter : - 1, opt_iter : - 1, glob_max_iter : 50000, glob_max_hours : 0.0, glob_max_minutes : 15.0, omniout_str(ALWAYS, "##############ECHO OF PROBLEM#################"), omniout_str(ALWAYS, "##############temp/ln_sqrtpostode.ode#################"), omniout_str(ALWAYS, "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "Digits:32,"), omniout_str(ALWAYS, "max_terms:30,"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* END FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "x_start:0.1,"), omniout_str(ALWAYS, "x_end:0.5,"), omniout_str(ALWAYS, "array_y_init[0 + 1] : exact_soln_y(x_start),"), omniout_str(ALWAYS, "glob_look_poles:true,"), omniout_str(ALWAYS, "glob_max_iter:1000000,"), omniout_str(ALWAYS, "/* END SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN OVERRIDE BLOCK */"), omniout_str(ALWAYS, "glob_desired_digits_correct:10,"), omniout_str(ALWAYS, "glob_display_interval:0.001,"), omniout_str(ALWAYS, "glob_look_poles:true,"), omniout_str(ALWAYS, "glob_max_iter:10000000,"), omniout_str(ALWAYS, "glob_max_minutes:3,"), omniout_str(ALWAYS, "glob_subiter_method:3,"), omniout_str(ALWAYS, "/* END OVERRIDE BLOCK */"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN USER DEF BLOCK */"), omniout_str(ALWAYS, "exact_soln_y (x) := (block("), omniout_str(ALWAYS, " (5.0\ * ln(0.1 * x + 0.2) * ( 0.1 * x + 0.2) - 0.5 * x - 1.0) "), omniout_str(ALWAYS, "));"), omniout_str(ALWAYS, "/* END USER DEF BLOCK */"), omniout_str(ALWAYS, "#######END OF ECHO OF PROBLEM#################"), glob_unchanged_h_cnt : 0, glob_warned : false, glob_warned2 : false, glob_small_float : 1.0E-200, glob_smallish_float : 1.0E-64, glob_large_float : 1.0E+100, glob_almost_1 : 0.99, Digits : 32, max_terms : 30, glob_max_terms : max_terms, glob_html_log : true, array(array_y_init, 1 + max_terms), array(array_norms, 1 + max_terms), array(array_fact_1, 1 + max_terms), array(array_pole, 1 + max_terms), array(array_1st_rel_error, 1 + max_terms), array(array_last_rel_error, 1 + max_terms), array(array_type_pole, 1 + max_terms), array(array_y, 1 + max_terms), array(array_x, 1 + max_terms), array(array_tmp0, 1 + max_terms), array(array_tmp1, 1 + max_terms), array(array_tmp2, 1 + max_terms), array(array_tmp3, 1 + max_terms), array(array_tmp4, 1 + max_terms), array(array_tmp5, 1 + max_terms), array(array_m1, 1 + max_terms), array(array_y_higher, 1 + 2, 1 + max_terms), array(array_y_higher_work, 1 + 2, 1 + max_terms), array(array_y_higher_work2, 1 + 2, 1 + max_terms), array(array_y_set_initial, 1 + 2, 1 + max_terms), array(array_poles, 1 + 1, 1 + 3), array(array_real_pole, 1 + 1, 1 + 3), array(array_complex_pole, 1 + 1, 1 + 3), array(array_fact_2, 1 + max_terms, 1 + max_terms), term : 1, while term <= max_terms do (array_y_init : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_norms : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_fact_1 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_pole : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_1st_rel_error : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_last_rel_error : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_type_pole : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_y : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_x : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp0 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp1 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp2 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp3 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp4 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp5 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_m1 : 0.0, term : 1 + term), ord : 1, term while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work2 : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_set_initial : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_poles : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_real_pole : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_complex_pole : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= max_terms do (term : 1, while term <= max_terms do (array_fact_2 : 0.0, term : 1 + term), ord, term ord : 1 + ord), array(array_y, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_y : 0.0, term : 1 + term), term array(array_x, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_x : 0.0, term : 1 + term), term array(array_tmp0, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp0 : 0.0, term : 1 + term), term array(array_tmp1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp1 : 0.0, term : 1 + term), term array(array_tmp2, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp2 : 0.0, term : 1 + term), term array(array_tmp3, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp3 : 0.0, term : 1 + term), term array(array_tmp4, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp4 : 0.0, term : 1 + term), term array(array_tmp5, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp5 : 0.0, term : 1 + term), term array(array_m1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_m1 : 0.0, term : 1 + term), term array(array_const_1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_const_1 : 0.0, term : 1 + term), term array_const_1 : 1, array(array_const_0D0, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D0 : 0.0, term : 1 + term), term array_const_0D0 : 0.0, array(array_const_0D1, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D1 : 0.0, term : 1 + term), term array_const_0D1 : 0.1, array(array_const_0D2, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D2 : 0.0, term : 1 + term), term array_const_0D2 : 0.2, array(array_m1, 1 + 1 + max_terms), term : 1, 1 while term <= max_terms do (array_m1 : 0.0, term : 1 + term), term array_m1 : - 1.0, iiif : 0, while iiif <= glob_max_terms do (jjjf : 0, 1 while jjjf <= glob_max_terms do (array_fact_1 : 0, iiif array_fact_2 : 0, jjjf : 1 + jjjf), iiif : 1 + iiif), x_start : 0.1, iiif, jjjf x_end : 0.5, array_y_init : exact_soln_y(x_start), 1 + 0 glob_look_poles : true, glob_max_iter : 1000000, glob_desired_digits_correct : 10, glob_display_interval : 0.001, glob_look_poles : true, glob_max_iter : 10000000, glob_max_minutes : 3, glob_subiter_method : 3, glob_last_good_h : glob_h, glob_max_terms : max_terms, glob_max_sec : convfloat(3600.0) convfloat(glob_max_hours) + convfloat(60.0) convfloat(glob_max_minutes), if glob_h > 0.0 then (glob_neg_h : false, glob_display_interval : omniabs(glob_display_interval)) else (glob_neg_h : true, glob_display_interval : - omniabs(glob_display_interval)), chk_data(), array_y_set_initial : true, 1, 1 array_y_set_initial : false, array_y_set_initial : false, 1, 2 1, 3 array_y_set_initial : false, array_y_set_initial : false, 1, 4 1, 5 array_y_set_initial : false, array_y_set_initial : false, 1, 6 1, 7 array_y_set_initial : false, array_y_set_initial : false, 1, 8 1, 9 array_y_set_initial : false, array_y_set_initial : false, 1, 10 1, 11 array_y_set_initial : false, array_y_set_initial : false, 1, 12 1, 13 array_y_set_initial : false, array_y_set_initial : false, 1, 14 1, 15 array_y_set_initial : false, array_y_set_initial : false, 1, 16 1, 17 array_y_set_initial : false, array_y_set_initial : false, 1, 18 1, 19 array_y_set_initial : false, array_y_set_initial : false, 1, 20 1, 21 array_y_set_initial : false, array_y_set_initial : false, 1, 22 1, 23 array_y_set_initial : false, array_y_set_initial : false, 1, 24 1, 25 array_y_set_initial : false, array_y_set_initial : false, 1, 26 1, 27 array_y_set_initial : false, array_y_set_initial : false, 1, 28 1, 29 array_y_set_initial : false, omniout_str(ALWAYS, "START of Optimize"), 1, 30 glob_check_sign : check_sign(x_start, x_end), glob_h : check_sign(x_start, x_end), if glob_display_interval < glob_h then glob_h : glob_display_interval, if glob_max_h < glob_h then glob_h : glob_max_h, found_h : - 1.0, best_h : 0.0, min_value : glob_large_float, est_answer : est_size_answer(), opt_iter : 1, while (opt_iter <= 20) and (found_h < 0.0) do (omniout_int(ALWAYS, "opt_iter", 32, opt_iter, 4, ""), array_x : x_start, array_x : glob_h, 1 2 glob_next_display : x_start, order_diff : 1, term_no : 1, while term_no <= order_diff do (array_y : term_no array_y_init expt(glob_h, term_no - 1) term_no ---------------------------------------------, term_no : 1 + term_no), factorial_1(term_no - 1) rows : order_diff, r_order : 1, while r_order <= rows do (term_no : 1, while term_no <= 1 - r_order + rows do (it : - 1 + r_order + term_no, array_y_init expt(glob_h, term_no - 1) it array_y_higher : ----------------------------------------, r_order, term_no factorial_1(term_no - 1) term_no : 1 + term_no), r_order : 1 + r_order), atomall(), est_needed_step_err : estimated_needed_step_error(x_start, x_end, glob_h, est_answer), omniout_float(ALWAYS, "est_needed_step_err", 32, est_needed_step_err, 16, ""), value3 : test_suggested_h(), omniout_float(ALWAYS, "value3", 32, value3, 32, ""), if (value3 < est_needed_step_err) and (found_h < 0.0) then (best_h : glob_h, found_h : 1.0), omniout_float(ALWAYS, "best_h", 32, best_h, 32, ""), opt_iter : 1 + opt_iter, glob_h : glob_h 0.5), if found_h > 0.0 then glob_h : best_h else omniout_str(ALWAYS, "No increment to obtain desired accuracy found"), if glob_html_log then html_log_file : openw("html/entry.html"), if found_h > 0.0 then (omniout_str(ALWAYS, "START of Soultion"), array_x : x_start, array_x : glob_h, glob_next_display : x_start, 1 2 order_diff : 1, term_no : 1, while term_no <= order_diff do (array_y : (array_y_init expt(glob_h, term_no - 1)) term_no term_no /factorial_1(term_no - 1), term_no : 1 + term_no), rows : order_diff, r_order : 1, while r_order <= rows do (term_no : 1, while term_no <= 1 - r_order + rows do (it : - 1 + r_order + term_no, array_y_init expt(glob_h, term_no - 1) it array_y_higher : ----------------------------------------, r_order, term_no factorial_1(term_no - 1) term_no : 1 + term_no), r_order : 1 + r_order), current_iter : 1, glob_clock_start_sec : elapsed_time_seconds(), glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 0, glob_iter : 0, omniout_str(DEBUGL, " "), glob_reached_optimal_h : true, glob_optimal_clock_start_sec : elapsed_time_seconds(), while (glob_current_iter < glob_max_iter) and (glob_check_sign array_x < glob_check_sign x_end) 1 and (convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec) < convfloat(glob_max_sec)) do (if reached_interval () then (omniout_str(INFO, " "), omniout_str(INFO, "TOP MAIN SOLVE Loop")), glob_iter : 1 + glob_iter, glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 1 + glob_current_iter, atomall(), display_alot(current_iter), if glob_look_poles then check_for_pole(), if reached_interval() then glob_next_display : glob_display_interval + glob_next_display, array_x : glob_h + array_x , 1 1 array_x : glob_h, order_diff : 2, ord : 2, calc_term : 1, 2 iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 2, iii array_y_higher 2, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 2, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 2, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 2, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 1, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, term_no : glob_max_terms, factorial_1(calc_term - 1) while term_no >= 1 do (array_y : array_y_higher_work2 , term_no 1, term_no ord : 1, while ord <= order_diff do (array_y_higher : ord, term_no array_y_higher_work2 , ord : 1 + ord), term_no : term_no - 1)), ord, term_no omniout_str(ALWAYS, "Finished!"), if glob_iter >= glob_max_iter then omniout_str(ALWAYS, "Maximum Iterations Reached before Solution Completed!"), if elapsed_time_seconds() - convfloat(glob_orig_start_sec) >= convfloat(glob_max_sec) then omniout_str(ALWAYS, "Maximum Time Reached before Solution Completed!"), glob_clock_sec : elapsed_time_seconds(), omniout_str(INFO, "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));"), omniout_int(INFO, "Iterations ", 32, glob_iter, 4, " "), prog_report(x_start, x_end), if glob_html_log then (logstart(html_log_file), logitem_str(html_log_file, "2013-01-28T16:19:33-06:00"), logitem_str(html_log_file, "Maxima"), logitem_str(html_log_file, "ln_sqrt"), logitem_str(html_log_file, "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));"), logitem_float(html_log_file, x_start), logitem_float(html_log_file, x_end), logitem_float(html_log_file, array_x ), logitem_float(html_log_file, glob_h), 1 logitem_str(html_log_file, "16"), logitem_good_digits(html_log_file, array_last_rel_error ), logitem_integer(html_log_file, glob_max_terms), 1 logitem_float(html_log_file, array_1st_rel_error ), 1 logitem_float(html_log_file, array_last_rel_error ), 1 logitem_integer(html_log_file, glob_iter), logitem_pole(html_log_file, array_type_pole ), 1 if (array_type_pole = 1) or (array_type_pole = 2) 1 1 then (logitem_float(html_log_file, array_pole ), 1 logitem_float(html_log_file, array_pole ), 0) 2 else (logitem_str(html_log_file, "NA"), logitem_str(html_log_file, "NA"), 0), logitem_time(html_log_file, convfloat(glob_clock_sec)), if glob_percent_done < 100.0 then (logitem_time(html_log_file, convfloat(glob_total_exp_sec)), 0) else (logitem_str(html_log_file, "Done"), 0), log_revs(html_log_file, " 165 "), logitem_str(html_log_file, "ln_sqrt diffeq.max"), logitem_str(html_log_file, "ln_sqrt maxima results"), logitem_str(html_log_file, "All Tests - All Languages"), logend(html_log_file)), if glob_html_log then close(html_log_file))) (%o57) main() := block([d1, d2, d3, d4, est_err_2, niii, done_once, term, ord, order_diff, term_no, html_log_file, iiif, jjjf, rows, r_order, sub_iter, calc_term, iii, temp_sum, current_iter, x_start, x_end, it, max_terms, opt_iter, tmp, subiter, est_needed_step_err, value3, min_value, est_answer, best_h, found_h, repeat_it], define_variable(glob_max_terms, 30, fixnum), define_variable(glob_iolevel, 5, fixnum), define_variable(ALWAYS, 1, fixnum), define_variable(INFO, 2, fixnum), define_variable(DEBUGL, 3, fixnum), define_variable(DEBUGMASSIVE, 4, fixnum), define_variable(MAX_UNCHANGED, 10, fixnum), define_variable(glob_check_sign, 1.0, float), define_variable(glob_desired_digits_correct, 8.0, float), define_variable(glob_max_value3, 0.0, float), define_variable(glob_ratio_of_radius, 0.01, float), define_variable(glob_percent_done, 0.0, float), define_variable(glob_subiter_method, 3, fixnum), define_variable(glob_total_exp_sec, 0.1, float), define_variable(glob_optimal_expect_sec, 0.1, float), define_variable(glob_html_log, true, boolean), define_variable(glob_good_digits, 0, fixnum), define_variable(glob_max_opt_iter, 10, fixnum), define_variable(glob_dump, false, boolean), define_variable(glob_djd_debug, true, boolean), define_variable(glob_display_flag, true, boolean), define_variable(glob_djd_debug2, true, boolean), define_variable(glob_sec_in_minute, 60, fixnum), define_variable(glob_min_in_hour, 60, fixnum), define_variable(glob_hours_in_day, 24, fixnum), define_variable(glob_days_in_year, 365, fixnum), define_variable(glob_sec_in_hour, 3600, fixnum), define_variable(glob_sec_in_day, 86400, fixnum), define_variable(glob_sec_in_year, 31536000, fixnum), define_variable(glob_almost_1, 0.999, float), define_variable(glob_clock_sec, 0.0, float), define_variable(glob_clock_start_sec, 0.0, float), define_variable(glob_not_yet_finished, true, boolean), define_variable(glob_initial_pass, true, boolean), define_variable(glob_not_yet_start_msg, true, boolean), define_variable(glob_reached_optimal_h, false, boolean), define_variable(glob_optimal_done, false, boolean), define_variable(glob_disp_incr, 0.1, float), define_variable(glob_h, 0.1, float), define_variable(glob_max_h, 0.1, float), define_variable(glob_large_float, 9.0E+100, float), define_variable(glob_last_good_h, 0.1, float), define_variable(glob_look_poles, false, boolean), define_variable(glob_neg_h, false, boolean), define_variable(glob_display_interval, 0.0, float), define_variable(glob_next_display, 0.0, float), define_variable(glob_dump_analytic, false, boolean), define_variable(glob_abserr, 1.0E-11, float), define_variable(glob_relerr, 1.0E-11, float), define_variable(glob_max_hours, 0.0, float), define_variable(glob_max_iter, 1000, fixnum), define_variable(glob_max_rel_trunc_err, 1.0E-11, float), define_variable(glob_max_trunc_err, 1.0E-11, float), define_variable(glob_no_eqs, 0, fixnum), define_variable(glob_optimal_clock_start_sec, 0.0, float), define_variable(glob_optimal_start, 0.0, float), define_variable(glob_small_float, 1.0E-201, float), define_variable(glob_smallish_float, 1.0E-101, float), define_variable(glob_unchanged_h_cnt, 0, fixnum), define_variable(glob_warned, false, boolean), define_variable(glob_warned2, false, boolean), define_variable(glob_max_sec, 10000.0, float), define_variable(glob_orig_start_sec, 0.0, float), define_variable(glob_start, 0, fixnum), define_variable(glob_curr_iter_when_opt, 0, fixnum), define_variable(glob_current_iter, 0, fixnum), define_variable(glob_iter, 0, fixnum), define_variable(glob_normmax, 0.0, float), define_variable(glob_max_minutes, 0.0, float), ALWAYS : 1, INFO : 2, DEBUGL : 3, DEBUGMASSIVE : 4, glob_iolevel : INFO, glob_orig_start_sec : elapsed_time_seconds(), MAX_UNCHANGED : 10, glob_curr_iter_when_opt : 0, glob_display_flag : true, glob_no_eqs : 1, glob_iter : - 1, opt_iter : - 1, glob_max_iter : 50000, glob_max_hours : 0.0, glob_max_minutes : 15.0, omniout_str(ALWAYS, "##############ECHO OF PROBLEM#################"), omniout_str(ALWAYS, "##############temp/ln_sqrtpostode.ode#################"), omniout_str(ALWAYS, "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "Digits:32,"), omniout_str(ALWAYS, "max_terms:30,"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* END FIRST INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "x_start:0.1,"), omniout_str(ALWAYS, "x_end:0.5,"), omniout_str(ALWAYS, "array_y_init[0 + 1] : exact_soln_y(x_start),"), omniout_str(ALWAYS, "glob_look_poles:true,"), omniout_str(ALWAYS, "glob_max_iter:1000000,"), omniout_str(ALWAYS, "/* END SECOND INPUT BLOCK */"), omniout_str(ALWAYS, "/* BEGIN OVERRIDE BLOCK */"), omniout_str(ALWAYS, "glob_desired_digits_correct:10,"), omniout_str(ALWAYS, "glob_display_interval:0.001,"), omniout_str(ALWAYS, "glob_look_poles:true,"), omniout_str(ALWAYS, "glob_max_iter:10000000,"), omniout_str(ALWAYS, "glob_max_minutes:3,"), omniout_str(ALWAYS, "glob_subiter_method:3,"), omniout_str(ALWAYS, "/* END OVERRIDE BLOCK */"), omniout_str(ALWAYS, "!"), omniout_str(ALWAYS, "/* BEGIN USER DEF BLOCK */"), omniout_str(ALWAYS, "exact_soln_y (x) := (block("), omniout_str(ALWAYS, " (5.0\ * ln(0.1 * x + 0.2) * ( 0.1 * x + 0.2) - 0.5 * x - 1.0) "), omniout_str(ALWAYS, "));"), omniout_str(ALWAYS, "/* END USER DEF BLOCK */"), omniout_str(ALWAYS, "#######END OF ECHO OF PROBLEM#################"), glob_unchanged_h_cnt : 0, glob_warned : false, glob_warned2 : false, glob_small_float : 1.0E-200, glob_smallish_float : 1.0E-64, glob_large_float : 1.0E+100, glob_almost_1 : 0.99, Digits : 32, max_terms : 30, glob_max_terms : max_terms, glob_html_log : true, array(array_y_init, 1 + max_terms), array(array_norms, 1 + max_terms), array(array_fact_1, 1 + max_terms), array(array_pole, 1 + max_terms), array(array_1st_rel_error, 1 + max_terms), array(array_last_rel_error, 1 + max_terms), array(array_type_pole, 1 + max_terms), array(array_y, 1 + max_terms), array(array_x, 1 + max_terms), array(array_tmp0, 1 + max_terms), array(array_tmp1, 1 + max_terms), array(array_tmp2, 1 + max_terms), array(array_tmp3, 1 + max_terms), array(array_tmp4, 1 + max_terms), array(array_tmp5, 1 + max_terms), array(array_m1, 1 + max_terms), array(array_y_higher, 1 + 2, 1 + max_terms), array(array_y_higher_work, 1 + 2, 1 + max_terms), array(array_y_higher_work2, 1 + 2, 1 + max_terms), array(array_y_set_initial, 1 + 2, 1 + max_terms), array(array_poles, 1 + 1, 1 + 3), array(array_real_pole, 1 + 1, 1 + 3), array(array_complex_pole, 1 + 1, 1 + 3), array(array_fact_2, 1 + max_terms, 1 + max_terms), term : 1, while term <= max_terms do (array_y_init : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_norms : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_fact_1 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_pole : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_1st_rel_error : 0.0, term : 1 + term), term term : 1, while term <= max_terms do (array_last_rel_error : 0.0, term term : 1 + term), term : 1, while term <= max_terms do (array_type_pole : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_y : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_x : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp0 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp1 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp2 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp3 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp4 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_tmp5 : 0.0, term : 1 + term), term : 1, term while term <= max_terms do (array_m1 : 0.0, term : 1 + term), ord : 1, term while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_higher_work2 : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= 2 do (term : 1, while term <= max_terms do (array_y_set_initial : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_poles : 0.0, ord, term term : 1 + term), ord : 1 + ord), ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_real_pole : 0.0, term : 1 + term), ord : 1 + ord), ord, term ord : 1, while ord <= 1 do (term : 1, while term <= 3 do (array_complex_pole : 0.0, term : 1 + term), ord, term ord : 1 + ord), ord : 1, while ord <= max_terms do (term : 1, while term <= max_terms do (array_fact_2 : 0.0, term : 1 + term), ord, term ord : 1 + ord), array(array_y, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_y : 0.0, term : 1 + term), term array(array_x, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_x : 0.0, term : 1 + term), term array(array_tmp0, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp0 : 0.0, term : 1 + term), term array(array_tmp1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp1 : 0.0, term : 1 + term), term array(array_tmp2, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp2 : 0.0, term : 1 + term), term array(array_tmp3, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp3 : 0.0, term : 1 + term), term array(array_tmp4, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp4 : 0.0, term : 1 + term), term array(array_tmp5, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_tmp5 : 0.0, term : 1 + term), term array(array_m1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_m1 : 0.0, term : 1 + term), term array(array_const_1, 1 + 1 + max_terms), term : 1, while term <= 1 + max_terms do (array_const_1 : 0.0, term : 1 + term), term array_const_1 : 1, array(array_const_0D0, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D0 : 0.0, term : 1 + term), term array_const_0D0 : 0.0, array(array_const_0D1, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D1 : 0.0, term : 1 + term), term array_const_0D1 : 0.1, array(array_const_0D2, 1 + 1 + max_terms), term : 1, 1 while term <= 1 + max_terms do (array_const_0D2 : 0.0, term : 1 + term), term array_const_0D2 : 0.2, array(array_m1, 1 + 1 + max_terms), term : 1, 1 while term <= max_terms do (array_m1 : 0.0, term : 1 + term), term array_m1 : - 1.0, iiif : 0, while iiif <= glob_max_terms do (jjjf : 0, 1 while jjjf <= glob_max_terms do (array_fact_1 : 0, iiif array_fact_2 : 0, jjjf : 1 + jjjf), iiif : 1 + iiif), x_start : 0.1, iiif, jjjf x_end : 0.5, array_y_init : exact_soln_y(x_start), 1 + 0 glob_look_poles : true, glob_max_iter : 1000000, glob_desired_digits_correct : 10, glob_display_interval : 0.001, glob_look_poles : true, glob_max_iter : 10000000, glob_max_minutes : 3, glob_subiter_method : 3, glob_last_good_h : glob_h, glob_max_terms : max_terms, glob_max_sec : convfloat(3600.0) convfloat(glob_max_hours) + convfloat(60.0) convfloat(glob_max_minutes), if glob_h > 0.0 then (glob_neg_h : false, glob_display_interval : omniabs(glob_display_interval)) else (glob_neg_h : true, glob_display_interval : - omniabs(glob_display_interval)), chk_data(), array_y_set_initial : true, 1, 1 array_y_set_initial : false, array_y_set_initial : false, 1, 2 1, 3 array_y_set_initial : false, array_y_set_initial : false, 1, 4 1, 5 array_y_set_initial : false, array_y_set_initial : false, 1, 6 1, 7 array_y_set_initial : false, array_y_set_initial : false, 1, 8 1, 9 array_y_set_initial : false, array_y_set_initial : false, 1, 10 1, 11 array_y_set_initial : false, array_y_set_initial : false, 1, 12 1, 13 array_y_set_initial : false, array_y_set_initial : false, 1, 14 1, 15 array_y_set_initial : false, array_y_set_initial : false, 1, 16 1, 17 array_y_set_initial : false, array_y_set_initial : false, 1, 18 1, 19 array_y_set_initial : false, array_y_set_initial : false, 1, 20 1, 21 array_y_set_initial : false, array_y_set_initial : false, 1, 22 1, 23 array_y_set_initial : false, array_y_set_initial : false, 1, 24 1, 25 array_y_set_initial : false, array_y_set_initial : false, 1, 26 1, 27 array_y_set_initial : false, array_y_set_initial : false, 1, 28 1, 29 array_y_set_initial : false, omniout_str(ALWAYS, "START of Optimize"), 1, 30 glob_check_sign : check_sign(x_start, x_end), glob_h : check_sign(x_start, x_end), if glob_display_interval < glob_h then glob_h : glob_display_interval, if glob_max_h < glob_h then glob_h : glob_max_h, found_h : - 1.0, best_h : 0.0, min_value : glob_large_float, est_answer : est_size_answer(), opt_iter : 1, while (opt_iter <= 20) and (found_h < 0.0) do (omniout_int(ALWAYS, "opt_iter", 32, opt_iter, 4, ""), array_x : x_start, array_x : glob_h, 1 2 glob_next_display : x_start, order_diff : 1, term_no : 1, while term_no <= order_diff do (array_y : term_no array_y_init expt(glob_h, term_no - 1) term_no ---------------------------------------------, term_no : 1 + term_no), factorial_1(term_no - 1) rows : order_diff, r_order : 1, while r_order <= rows do (term_no : 1, while term_no <= 1 - r_order + rows do (it : - 1 + r_order + term_no, array_y_init expt(glob_h, term_no - 1) it array_y_higher : ----------------------------------------, r_order, term_no factorial_1(term_no - 1) term_no : 1 + term_no), r_order : 1 + r_order), atomall(), est_needed_step_err : estimated_needed_step_error(x_start, x_end, glob_h, est_answer), omniout_float(ALWAYS, "est_needed_step_err", 32, est_needed_step_err, 16, ""), value3 : test_suggested_h(), omniout_float(ALWAYS, "value3", 32, value3, 32, ""), if (value3 < est_needed_step_err) and (found_h < 0.0) then (best_h : glob_h, found_h : 1.0), omniout_float(ALWAYS, "best_h", 32, best_h, 32, ""), opt_iter : 1 + opt_iter, glob_h : glob_h 0.5), if found_h > 0.0 then glob_h : best_h else omniout_str(ALWAYS, "No increment to obtain desired accuracy found"), if glob_html_log then html_log_file : openw("html/entry.html"), if found_h > 0.0 then (omniout_str(ALWAYS, "START of Soultion"), array_x : x_start, array_x : glob_h, glob_next_display : x_start, 1 2 order_diff : 1, term_no : 1, while term_no <= order_diff do (array_y : (array_y_init expt(glob_h, term_no - 1)) term_no term_no /factorial_1(term_no - 1), term_no : 1 + term_no), rows : order_diff, r_order : 1, while r_order <= rows do (term_no : 1, while term_no <= 1 - r_order + rows do (it : - 1 + r_order + term_no, array_y_init expt(glob_h, term_no - 1) it array_y_higher : ----------------------------------------, r_order, term_no factorial_1(term_no - 1) term_no : 1 + term_no), r_order : 1 + r_order), current_iter : 1, glob_clock_start_sec : elapsed_time_seconds(), glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 0, glob_iter : 0, omniout_str(DEBUGL, " "), glob_reached_optimal_h : true, glob_optimal_clock_start_sec : elapsed_time_seconds(), while (glob_current_iter < glob_max_iter) and (glob_check_sign array_x < glob_check_sign x_end) 1 and (convfloat(glob_clock_sec) - convfloat(glob_orig_start_sec) < convfloat(glob_max_sec)) do (if reached_interval () then (omniout_str(INFO, " "), omniout_str(INFO, "TOP MAIN SOLVE Loop")), glob_iter : 1 + glob_iter, glob_clock_sec : elapsed_time_seconds(), glob_current_iter : 1 + glob_current_iter, atomall(), display_alot(current_iter), if glob_look_poles then check_for_pole(), if reached_interval() then glob_next_display : glob_display_interval + glob_next_display, array_x : glob_h + array_x , 1 1 array_x : glob_h, order_diff : 2, ord : 2, calc_term : 1, 2 iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 2, iii array_y_higher 2, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 2, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 2, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 2, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, ord : 1, calc_term : 1, factorial_1(calc_term - 1) iii : glob_max_terms, while iii >= calc_term do (array_y_higher_work : 1, iii array_y_higher 1, iii --------------------------- expt(glob_h, calc_term - 1) -------------------------------------, iii : iii - 1), temp_sum : 0.0, factorial_3(iii - calc_term, iii - 1) ord : 1, calc_term : 1, iii : glob_max_terms, while iii >= calc_term do (temp_sum : array_y_higher_work + temp_sum, ord, iii iii : iii - 1), array_y_higher_work2 : ord, calc_term temp_sum expt(glob_h, calc_term - 1) ------------------------------------, term_no : glob_max_terms, factorial_1(calc_term - 1) while term_no >= 1 do (array_y : array_y_higher_work2 , term_no 1, term_no ord : 1, while ord <= order_diff do (array_y_higher : ord, term_no array_y_higher_work2 , ord : 1 + ord), term_no : term_no - 1)), ord, term_no omniout_str(ALWAYS, "Finished!"), if glob_iter >= glob_max_iter then omniout_str(ALWAYS, "Maximum Iterations Reached before Solution Completed!"), if elapsed_time_seconds() - convfloat(glob_orig_start_sec) >= convfloat(glob_max_sec) then omniout_str(ALWAYS, "Maximum Time Reached before Solution Completed!"), glob_clock_sec : elapsed_time_seconds(), omniout_str(INFO, "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));"), omniout_int(INFO, "Iterations ", 32, glob_iter, 4, " "), prog_report(x_start, x_end), if glob_html_log then (logstart(html_log_file), logitem_str(html_log_file, "2013-01-28T16:19:33-06:00"), logitem_str(html_log_file, "Maxima"), logitem_str(html_log_file, "ln_sqrt"), logitem_str(html_log_file, "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));"), logitem_float(html_log_file, x_start), logitem_float(html_log_file, x_end), logitem_float(html_log_file, array_x ), logitem_float(html_log_file, glob_h), 1 logitem_str(html_log_file, "16"), logitem_good_digits(html_log_file, array_last_rel_error ), logitem_integer(html_log_file, glob_max_terms), 1 logitem_float(html_log_file, array_1st_rel_error ), 1 logitem_float(html_log_file, array_last_rel_error ), 1 logitem_integer(html_log_file, glob_iter), logitem_pole(html_log_file, array_type_pole ), 1 if (array_type_pole = 1) or (array_type_pole = 2) 1 1 then (logitem_float(html_log_file, array_pole ), 1 logitem_float(html_log_file, array_pole ), 0) 2 else (logitem_str(html_log_file, "NA"), logitem_str(html_log_file, "NA"), 0), logitem_time(html_log_file, convfloat(glob_clock_sec)), if glob_percent_done < 100.0 then (logitem_time(html_log_file, convfloat(glob_total_exp_sec)), 0) else (logitem_str(html_log_file, "Done"), 0), log_revs(html_log_file, " 165 "), logitem_str(html_log_file, "ln_sqrt diffeq.max"), logitem_str(html_log_file, "ln_sqrt maxima results"), logitem_str(html_log_file, "All Tests - All Languages"), logend(html_log_file)), if glob_html_log then close(html_log_file))) (%i58) main() "##############ECHO OF PROBLEM#################" "##############temp/ln_sqrtpostode.ode#################" "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));" "!" "/* BEGIN FIRST INPUT BLOCK */" "Digits:32," "max_terms:30," "!" "/* END FIRST INPUT BLOCK */" "/* BEGIN SECOND INPUT BLOCK */" "x_start:0.1," "x_end:0.5," "array_y_init[0 + 1] : exact_soln_y(x_start)," "glob_look_poles:true," "glob_max_iter:1000000," "/* END SECOND INPUT BLOCK */" "/* BEGIN OVERRIDE BLOCK */" "glob_desired_digits_correct:10," "glob_display_interval:0.001," "glob_look_poles:true," "glob_max_iter:10000000," "glob_max_minutes:3," "glob_subiter_method:3," "/* END OVERRIDE BLOCK */" "!" "/* BEGIN USER DEF BLOCK */" "exact_soln_y (x) := (block(" " (5.0 * ln(0.1 * x + 0.2) * ( 0.1 * x + 0.2) - 0.5 * x - 1.0) " "));" "/* END USER DEF BLOCK */" "#######END OF ECHO OF PROBLEM#################" "START of Optimize" min_size = 0.0 "" min_size = 1. "" opt_iter = 1 glob_desired_digits_correct = 10. "" desired_abs_gbl_error = 1.0000000000E-10 "" range = 0.4 "" estimated_steps = 400. "" step_error = 2.50000000000000E-13 "" est_needed_step_err = 2.50000000000000E-13 "" hn_div_ho = 0.5 "" hn_div_ho_2 = 0.25 "" hn_div_ho_3 = 0.125 "" value3 = 6.7682835704795540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000E-90 "" max_value3 = 6.7682835704795540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000E-90 "" value3 = 6.7682835704795540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000E-90 "" best_h = 1.000E-3 "" "START of Soultion" " " "TOP MAIN SOLVE Loop" x[1] = 0.1 " " y[1] (analytic) = -2.688680135677902 " " y[1] (numeric) = -2.688680135677902 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.101 " " y[1] (analytic) = -2.689460340523307 " " y[1] (numeric) = -2.6894603405233073 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.651220518699499000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10200000000000001 " " y[1] (analytic) = -2.69024030738679 " " y[1] (numeric) = -2.69024030738679 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10300000000000001 " " y[1] (analytic) = -2.691020036381567 " " y[1] (numeric) = -2.6910200363815675 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.650263483163059000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10400000000000001 " " y[1] (analytic) = -2.6917995276207485 " " y[1] (numeric) = -2.691799527620749 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.6497855999053100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10500000000000001 " " y[1] (analytic) = -2.6925787812173354 " " y[1] (numeric) = -2.692578781217336 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.64930813890350300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10600000000000001 " " y[1] (analytic) = -2.6933577972842215 " " y[1] (numeric) = -2.6933577972842224 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.29766219919127400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10700000000000001 " " y[1] (analytic) = -2.6941365759341958 " " y[1] (numeric) = -2.694136575934196 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.648354481420727700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10800000000000001 " " y[1] (analytic) = -2.694915117279936 " " y[1] (numeric) = -2.694915117279937 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.29575656763761900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.10900000000000001 " " y[1] (analytic) = -2.695693421434017 " " y[1] (numeric) = -2.695693421434018 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.29480501246185700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11000000000000001 " " y[1] (analytic) = -2.6964714885089043 " " y[1] (numeric) = -2.696471488508905 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.2938542961982900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11100000000000002 " " y[1] (analytic) = -2.697249318616959 " " y[1] (numeric) = -2.6972493186169593 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.646452208866526800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11200000000000002 " " y[1] (analytic) = -2.698026911870432 " " y[1] (numeric) = -2.698026911870433 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.29195537595430200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11300000000000002 " " y[1] (analytic) = -2.6988042683814735 " " y[1] (numeric) = -2.698804268381474 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.645503584876096800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11400000000000002 " " y[1] (analytic) = -2.699581388262122 " " y[1] (numeric) = -2.6995813882621227 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.29005979801889800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11500000000000002 " " y[1] (analytic) = -2.7003582716243133 " " y[1] (numeric) = -2.700358271624314 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.289113259648580600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11600000000000002 " " y[1] (analytic) = -2.7011349185798768 " " y[1] (numeric) = -2.701134918579877 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.644083776768702800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11700000000000002 " " y[1] (analytic) = -2.701911329240535 " " y[1] (numeric) = -2.7019113292405357 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.28722267858352850000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11800000000000002 " " y[1] (analytic) = -2.702687503717906 " " y[1] (numeric) = -2.702687503717907 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.286278633687090000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.11900000000000002 " " y[1] (analytic) = -2.703463442123503 " " y[1] (numeric) = -2.7034634421235038 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.28533541775021500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12000000000000002 " " y[1] (analytic) = -2.7042391445687324 " " y[1] (numeric) = -2.7042391445687333 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.284393029677005000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12100000000000002 " " y[1] (analytic) = -2.705014611164896 " " y[1] (numeric) = -2.705014611164897 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.92517720256030700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12200000000000003 " " y[1] (analytic) = -2.705789842023192 " " y[1] (numeric) = -2.7057898420231927 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.28251073274785600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12300000000000003 " " y[1] (analytic) = -2.706564837254712 " " y[1] (numeric) = -2.7065648372547124 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.640785410854984400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12400000000000003 " " y[1] (analytic) = -2.707339596970443 " " y[1] (numeric) = -2.707339596970444 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.280631734171846600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12500000000000003 " " y[1] (analytic) = -2.7081141212812696 " " y[1] (numeric) = -2.7081141212812705 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.27969346904741200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12600000000000003 " " y[1] (analytic) = -2.70888841029797 " " y[1] (numeric) = -2.7088884102979707 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.278756025252543300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12700000000000003 " " y[1] (analytic) = -2.709662464131218 " " y[1] (numeric) = -2.709662464131219 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.277819401705061600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12800000000000003 " " y[1] (analytic) = -2.7104362828915853 " " y[1] (numeric) = -2.7104362828915862 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.27688359732473200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.12900000000000003 " " y[1] (analytic) = -2.7112098666895377 " " y[1] (numeric) = -2.7112098666895386 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.27594861103325700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13000000000000003 " " y[1] (analytic) = -2.7119832156354384 " " y[1] (numeric) = -2.7119832156354393 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.275014441754272600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13100000000000003 " " y[1] (analytic) = -2.7127563298395465 " " y[1] (numeric) = -2.7127563298395474 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.27408108841334500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13200000000000003 " " y[1] (analytic) = -2.7135292094120174 " " y[1] (numeric) = -2.7135292094120183 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.27314854993796300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13300000000000003 " " y[1] (analytic) = -2.714301854462904 " " y[1] (numeric) = -2.7143018544629047 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.27221682525753840000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13400000000000004 " " y[1] (analytic) = -2.7150742651021544 " " y[1] (numeric) = -2.7150742651021558 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.906928869955096700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13500000000000004 " " y[1] (analytic) = -2.7158464414396164 " " y[1] (numeric) = -2.7158464414396173 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.270355813008777300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13600000000000004 " " y[1] (analytic) = -2.716618383585032 " " y[1] (numeric) = -2.716618383585033 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.26942652330882540000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13700000000000004 " " y[1] (analytic) = -2.717390091648042 " " y[1] (numeric) = -2.7173900916480433 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.902747064710884500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13800000000000004 " " y[1] (analytic) = -2.7181615657381846 " " y[1] (numeric) = -2.718161565738186 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.901355557164525600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.13900000000000004 " " y[1] (analytic) = -2.7189328059648945 " " y[1] (numeric) = -2.718932805964896 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.899965260735426600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14000000000000004 " " y[1] (analytic) = -2.7197038124375057 " " y[1] (numeric) = -2.7197038124375066 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.265717449225122300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14100000000000004 " " y[1] (analytic) = -2.720474585265248 " " y[1] (numeric) = -2.720474585265249 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.26479219659215170000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14200000000000004 " " y[1] (analytic) = -2.7212451245572513 " " y[1] (numeric) = -2.721245124557252 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.263867748204537500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14300000000000004 " " y[1] (analytic) = -2.722015430422542 " " y[1] (numeric) = -2.722015430422543 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.26294410301065800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14400000000000004 " " y[1] (analytic) = -2.722785502970045 " " y[1] (numeric) = -2.722785502970046 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.26202125996076500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14500000000000005 " " y[1] (analytic) = -2.723555342308585 " " y[1] (numeric) = -2.7235553423085856 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.630549609003488800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14600000000000005 " " y[1] (analytic) = -2.724324948546883 " " y[1] (numeric) = -2.724324948546884 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.26017797610328100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14700000000000005 " " y[1] (analytic) = -2.725094321793561 " " y[1] (numeric) = -2.7250943217935615 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.6296287666027600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14800000000000005 " " y[1] (analytic) = -2.7258634621571374 " " y[1] (numeric) = -2.725863462157138 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.629168944135699600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.14900000000000005 " " y[1] (analytic) = -2.7266323697460306 " " y[1] (numeric) = -2.7266323697460315 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.25741904026047200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15000000000000005 " " y[1] (analytic) = -2.72740104466856 " " y[1] (numeric) = -2.7274010446685604 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.628250494067070300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15100000000000005 " " y[1] (analytic) = -2.728169487032941 " " y[1] (numeric) = -2.7281694870329414 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.62779186542782600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15200000000000005 " " y[1] (analytic) = -2.7289376969472903 " " y[1] (numeric) = -2.7289376969472907 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.627333633695046700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15300000000000005 " " y[1] (analytic) = -2.729705674519624 " " y[1] (numeric) = -2.729705674519624 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15400000000000005 " " y[1] (analytic) = -2.730473419857857 " " y[1] (numeric) = -2.7304734198578573 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.626418358883643700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15500000000000005 " " y[1] (analytic) = -2.731240933069806 " " y[1] (numeric) = -2.7312409330698055 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.625961314774687400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15600000000000006 " " y[1] (analytic) = -2.732008214263184 " " y[1] (numeric) = -2.732008214263184 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15700000000000006 " " y[1] (analytic) = -2.732775263545608 " " y[1] (numeric) = -2.732775263545608 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15800000000000006 " " y[1] (analytic) = -2.733542081024593 " " y[1] (numeric) = -2.733542081024593 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.15900000000000006 " " y[1] (analytic) = -2.734308666807555 " " y[1] (numeric) = -2.734308666807555 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16000000000000006 " " y[1] (analytic) = -2.73507502100181 " " y[1] (numeric) = -2.73507502100181 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16100000000000006 " " y[1] (analytic) = -2.735841143714575 " " y[1] (numeric) = -2.7358411437145755 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.623227323963344600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16200000000000006 " " y[1] (analytic) = -2.7366070350529688 " " y[1] (numeric) = -2.7366070350529688 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16300000000000006 " " y[1] (analytic) = -2.7373726951240087 " " y[1] (numeric) = -2.7373726951240087 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16400000000000006 " " y[1] (analytic) = -2.738138124034615 " " y[1] (numeric) = -2.738138124034615 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16500000000000006 " " y[1] (analytic) = -2.738903321891609 " " y[1] (numeric) = -2.738903321891609 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16600000000000006 " " y[1] (analytic) = -2.7396682888017123 " " y[1] (numeric) = -2.7396682888017123 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16700000000000007 " " y[1] (analytic) = -2.740433024871549 " " y[1] (numeric) = -2.740433024871549 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16800000000000007 " " y[1] (analytic) = -2.741197530207644 " " y[1] (numeric) = -2.7411975302076446 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.620055486539210300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.16900000000000007 " " y[1] (analytic) = -2.741961804916425 " " y[1] (numeric) = -2.7419618049164254 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.619603923927009000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17000000000000007 " " y[1] (analytic) = -2.74272584910422 " " y[1] (numeric) = -2.7427258491042203 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.61915274906204400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17100000000000007 " " y[1] (analytic) = -2.743489662877261 " " y[1] (numeric) = -2.743489662877261 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17200000000000007 " " y[1] (analytic) = -2.7442532463416796 " " y[1] (numeric) = -2.7442532463416796 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17300000000000007 " " y[1] (analytic) = -2.745016599603512 " " y[1] (numeric) = -2.745016599603512 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17400000000000007 " " y[1] (analytic) = -2.7457797227686953 " " y[1] (numeric) = -2.7457797227686958 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.617351917080468400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17500000000000007 " " y[1] (analytic) = -2.7465426159430706 " " y[1] (numeric) = -2.746542615943071 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.61690267346380600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17600000000000007 " " y[1] (analytic) = -2.74730527923238 " " y[1] (numeric) = -2.7473052792323807 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.616453814605360600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17700000000000007 " " y[1] (analytic) = -2.7480677127422704 " " y[1] (numeric) = -2.7480677127422704 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17800000000000007 " " y[1] (analytic) = -2.7488299165782886 " " y[1] (numeric) = -2.748829916578289 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.615557249183535200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.17900000000000008 " " y[1] (analytic) = -2.749591890845888 " " y[1] (numeric) = -2.7495918908458883 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.61510954163253100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18000000000000008 " " y[1] (analytic) = -2.7503536356504226 " " y[1] (numeric) = -2.750353635650423 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.614662216864491700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18100000000000008 " " y[1] (analytic) = -2.751115151097151 " " y[1] (numeric) = -2.751115151097151 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18200000000000008 " " y[1] (analytic) = -2.7518764372912345 " " y[1] (numeric) = -2.751876437291235 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.6137687137115600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18300000000000008 " " y[1] (analytic) = -2.7526374943377396 " " y[1] (numeric) = -2.75263749433774 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.613322534345942300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18400000000000008 " " y[1] (analytic) = -2.753398322341635 " " y[1] (numeric) = -2.753398322341635 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18500000000000008 " " y[1] (analytic) = -2.754158921407793 " " y[1] (numeric) = -2.754158921407793 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18600000000000008 " " y[1] (analytic) = -2.754919291640991 " " y[1] (numeric) = -2.754919291640991 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18700000000000008 " " y[1] (analytic) = -2.7556794331459105 " " y[1] (numeric) = -2.7556794331459105 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18800000000000008 " " y[1] (analytic) = -2.756439346027136 " " y[1] (numeric) = -2.7564393460271366 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.61109734008887100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.18900000000000008 " " y[1] (analytic) = -2.7571990303891587 " " y[1] (numeric) = -2.757199030389159 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.610653438346025500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.19000000000000009 " " y[1] (analytic) = -2.7579584863363715 " " y[1] (numeric) = -2.7579584863363724 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.22041982901623500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1910000000000001 " " y[1] (analytic) = -2.7587177139730747 " " y[1] (numeric) = -2.758717713973075 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.609766768092014000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1920000000000001 " " y[1] (analytic) = -2.7594767134034712 " " y[1] (numeric) = -2.7594767134034717 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.609323998615425400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1930000000000001 " " y[1] (analytic) = -2.76023548473167 " " y[1] (numeric) = -2.7602354847316706 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.608881605596899600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1940000000000001 " " y[1] (analytic) = -2.7609940280616847 " " y[1] (numeric) = -2.7609940280616856 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.2168791771116500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1950000000000001 " " y[1] (analytic) = -2.7617523434974354 " " y[1] (numeric) = -2.7617523434974354 " " absolute error = 0.0 " " relative error = 0.0 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1960000000000001 " " y[1] (analytic) = -2.7625104311427444 " " y[1] (numeric) = -2.762510431142745 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.607556680487754500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1970000000000001 " " y[1] (analytic) = -2.7632682911013426 " " y[1] (numeric) = -2.763268291101343 " " absolute error = 4.4408920985006260000000000000000E-16 " " relative error = 1.607115788503707400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1980000000000001 " " y[1] (analytic) = -2.764025923476865 " " y[1] (numeric) = -2.764025923476866 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.213350541166005700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.1990000000000001 " " y[1] (analytic) = -2.764783328372853 " " y[1] (numeric) = -2.764783328372854 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.21247025249838060000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2000000000000001 " " y[1] (analytic) = -2.765540505892753 " " y[1] (numeric) = -2.765540505892754 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.21159071005329370000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2010000000000001 " " y[1] (analytic) = -2.766297456139918 " " y[1] (numeric) = -2.766297456139919 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.21071191288114900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2020000000000001 " " y[1] (analytic) = -2.767054179217607 " " y[1] (numeric) = -2.7670541792176078 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.20983386003399600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2030000000000001 " " y[1] (analytic) = -2.7678106752289846 " " y[1] (numeric) = -2.7678106752289855 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.2089565505655300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2040000000000001 " " y[1] (analytic) = -2.768566944277122 " " y[1] (numeric) = -2.7685669442771235 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.81211997529662500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2050000000000001 " " y[1] (analytic) = -2.7693229864649984 " " y[1] (numeric) = -2.7693229864649993 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.20720415798762600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2060000000000001 " " y[1] (analytic) = -2.770078801895497 " " y[1] (numeric) = -2.770078801895498 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.206329072993759400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2070000000000001 " " y[1] (analytic) = -2.770834390671409 " " y[1] (numeric) = -2.77083439067141 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.80818209141457340000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2080000000000001 " " y[1] (analytic) = -2.7715897528954336 " " y[1] (numeric) = -2.7715897528954345 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.20458112089734800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2090000000000001 " " y[1] (analytic) = -2.7723448886701743 " " y[1] (numeric) = -2.7723448886701756 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.80556237788020650000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2100000000000001 " " y[1] (analytic) = -2.7730997980981447 " " y[1] (numeric) = -2.7730997980981456 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.20283611974317800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2110000000000001 " " y[1] (analytic) = -2.7738544812817634 " " y[1] (numeric) = -2.7738544812817643 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.20196472343318100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2120000000000001 " " y[1] (analytic) = -2.7746089383233565 " " y[1] (numeric) = -2.774608938323358 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.80164109308770500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2130000000000001 " " y[1] (analytic) = -2.7753631693251597 " " y[1] (numeric) = -2.775363169325161 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.80033620203345800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2140000000000001 " " y[1] (analytic) = -2.776117174389314 " " y[1] (numeric) = -2.776117174389315 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.799032410594334000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2150000000000001 " " y[1] (analytic) = -2.776870953617869 " " y[1] (numeric) = -2.7768709536178697 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.19848647825335450000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2160000000000001 " " y[1] (analytic) = -2.7776245071127814 " " y[1] (numeric) = -2.7776245071127823 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.19761874733510200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2170000000000001 " " y[1] (analytic) = -2.7783778349759176 " " y[1] (numeric) = -2.7783778349759185 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.19675174671778860000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2180000000000001 " " y[1] (analytic) = -2.7791309373090503 " " y[1] (numeric) = -2.7791309373090516 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.79382821321899600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2190000000000001 " " y[1] (analytic) = -2.779883814213862 " " y[1] (numeric) = -2.7798838142138633 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.79252989904884500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2200000000000001 " " y[1] (analytic) = -2.7806364657919422 " " y[1] (numeric) = -2.7806364657919436 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.79123267618785930000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2210000000000001 " " y[1] (analytic) = -2.7813888921447893 " " y[1] (numeric) = -2.7813888921447907 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.78993654326003800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22200000000000011 " " y[1] (analytic) = -2.782141093373811 " " y[1] (numeric) = -2.7821410933738124 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.788641498891742500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22300000000000011 " " y[1] (analytic) = -2.782893069580323 " " y[1] (numeric) = -2.7828930695803242 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.787347541711698000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22400000000000012 " " y[1] (analytic) = -2.7836448208655495 " " y[1] (numeric) = -2.783644820865551 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.78605467035097930000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22500000000000012 " " y[1] (analytic) = -2.784396347330625 " " y[1] (numeric) = -2.784396347330626 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.78476288344301450000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22600000000000012 " " y[1] (analytic) = -2.785147649076591 " " y[1] (numeric) = -2.7851476490765927 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.37796290616476800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22700000000000012 " " y[1] (analytic) = -2.785898726204401 " " y[1] (numeric) = -2.7858987262044024 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.782182557530770000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22800000000000012 " " y[1] (analytic) = -2.786649578814915 " " y[1] (numeric) = -2.7866495788149166 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.37452535440672800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.22900000000000012 " " y[1] (analytic) = -2.787400207008905 " " y[1] (numeric) = -2.7874002070089063 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.779606553089172400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23000000000000012 " " y[1] (analytic) = -2.78815061088705 " " y[1] (numeric) = -2.788150610887052 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.37109355737100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23100000000000012 " " y[1] (analytic) = -2.788900790549942 " " y[1] (numeric) = -2.788900790549943 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.777034859269694000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23200000000000012 " " y[1] (analytic) = -2.7896507460980793 " " y[1] (numeric) = -2.7896507460980806 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.77575062546323370000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23300000000000012 " " y[1] (analytic) = -2.790400477631872 " " y[1] (numeric) = -2.790400477631873 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.77446746526091150000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23400000000000012 " " y[1] (analytic) = -2.79114998525164 " " y[1] (numeric) = -2.7911499852516415 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.77318537731706800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23500000000000013 " " y[1] (analytic) = -2.7918992690576143 " " y[1] (numeric) = -2.791899269057615 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.18126957352556470000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23600000000000013 " " y[1] (analytic) = -2.7926483291499338 " " y[1] (numeric) = -2.792648329149935 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.770624412833686700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23700000000000013 " " y[1] (analytic) = -2.793397165628651 " " y[1] (numeric) = -2.793397165628652 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.17956368907620700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23800000000000013 " " y[1] (analytic) = -2.7941457785937254 " " y[1] (numeric) = -2.7941457785937267 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.768067721293729500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.23900000000000013 " " y[1] (analytic) = -2.7948941681450306 " " y[1] (numeric) = -2.794894168145032 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.76679097453773400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24000000000000013 " " y[1] (analytic) = -2.7956423343823493 " " y[1] (numeric) = -2.79564233438235 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.17701019467625700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24100000000000013 " " y[1] (analytic) = -2.796390277405374 " " y[1] (numeric) = -2.7963902774053753 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.7642406723940200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24200000000000013 " " y[1] (analytic) = -2.797137997313711 " " y[1] (numeric) = -2.7971379973137123 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.76296711434923300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24300000000000013 " " y[1] (analytic) = -2.7978854942068754 " " y[1] (numeric) = -2.7978854942068767 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.76169461655488400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24400000000000013 " " y[1] (analytic) = -2.7986327681842944 " " y[1] (numeric) = -2.7986327681842957 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.76042317768808450000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24500000000000013 " " y[1] (analytic) = -2.799379819345307 " " y[1] (numeric) = -2.799379819345308 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.17276853095213100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24600000000000014 " " y[1] (analytic) = -2.8001266477891633 " " y[1] (numeric) = -2.800126647789164 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.17192231430455300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24700000000000014 " " y[1] (analytic) = -2.8008732536150243 " " y[1] (numeric) = -2.800873253615025 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.17107680097188700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24800000000000014 " " y[1] (analytic) = -2.8016196369219637 " " y[1] (numeric) = -2.8016196369219646 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.170231990078189500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.24900000000000014 " " y[1] (analytic) = -2.8023657978089673 " " y[1] (numeric) = -2.802365797808968 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.16938788074900300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2500000000000001 " " y[1] (analytic) = -2.8031117363749316 " " y[1] (numeric) = -2.803111736374933 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.75281670816703300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2510000000000001 " " y[1] (analytic) = -2.8038574527186664 " " y[1] (numeric) = -2.803857452718668 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.33540352658750900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2520000000000001 " " y[1] (analytic) = -2.804602946938894 " " y[1] (numeric) = -2.8046029469388953 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.75028963013927500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2530000000000001 " " y[1] (analytic) = -2.8053482191342467 " " y[1] (numeric) = -2.8053482191342485 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.33203688328021100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2540000000000001 " " y[1] (analytic) = -2.806093269403272 " " y[1] (numeric) = -2.8060932694032736 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.33035565413690100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2550000000000001 " " y[1] (analytic) = -2.806838097844428 " " y[1] (numeric) = -2.80683809784443 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.32867581769123700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2560000000000001 " " y[1] (analytic) = -2.8075827045560873 " " y[1] (numeric) = -2.807582704556089 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.32699737221494900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2570000000000001 " " y[1] (analytic) = -2.808327089636533 " " y[1] (numeric) = -2.8083270896365353 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.90665039497836400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2580000000000001 " " y[1] (analytic) = -2.809071253183964 " " y[1] (numeric) = -2.8090712531839657 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.32364464727202900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2590000000000001 " " y[1] (analytic) = -2.8098151952964887 " " y[1] (numeric) = -2.809815195296491 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.90246295545431500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2600000000000001 " " y[1] (analytic) = -2.8105589160721323 " " y[1] (numeric) = -2.810558916072134 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.3202974655403410000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2610000000000001 " " y[1] (analytic) = -2.8113024156088295 " " y[1] (numeric) = -2.8113024156088318 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.89828243636123500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2620000000000001 " " y[1] (analytic) = -2.8120456940044325 " " y[1] (numeric) = -2.8120456940044343 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.31695581329856800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2630000000000001 " " y[1] (analytic) = -2.8127887513567034 " " y[1] (numeric) = -2.812788751356705 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.31528705646114900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2640000000000001 " " y[1] (analytic) = -2.8135315877633196 " " y[1] (numeric) = -2.8135315877633214 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.31361967687167700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2650000000000001 " " y[1] (analytic) = -2.8142742033218724 " " y[1] (numeric) = -2.814274203321874 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.31195367282797100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2660000000000001 " " y[1] (analytic) = -2.8150165981298656 " " y[1] (numeric) = -2.815016598129868 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.88786130328840500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2670000000000001 " " y[1] (analytic) = -2.815758772284719 " " y[1] (numeric) = -2.815758772284721 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.30862578458348100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.2680000000000001 " " y[1] (analytic) = -2.8165007258837647 " " y[1] (numeric) = -2.8165007258837664 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.30696389699265200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.26900000000000013 " " y[1] (analytic) = -2.817242459024249 " " y[1] (numeric) = -2.817242459024251 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.30530337816749700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27000000000000013 " " y[1] (analytic) = -2.8179839718033337 " " y[1] (numeric) = -2.8179839718033355 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.30364422642011400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27100000000000013 " " y[1] (analytic) = -2.8187252643180942 " " y[1] (numeric) = -2.818725264318096 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.3019864400654400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27200000000000013 " " y[1] (analytic) = -2.81946633666552 " " y[1] (numeric) = -2.819466336665522 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.3003300174212510000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27300000000000013 " " y[1] (analytic) = -2.8202071889425167 " " y[1] (numeric) = -2.8202071889425184 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.29867495680813700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27400000000000013 " " y[1] (analytic) = -2.8209478212459027 " " y[1] (numeric) = -2.8209478212459045 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.2970212565495200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27500000000000013 " " y[1] (analytic) = -2.821688233672413 " " y[1] (numeric) = -2.8216882336724147 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.29536891497162600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27600000000000013 " " y[1] (analytic) = -2.8224284263186963 " " y[1] (numeric) = -2.822428426318698 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.29371793040349700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27700000000000014 " " y[1] (analytic) = -2.8231683992813164 " " y[1] (numeric) = -2.8231683992813186 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.86508537647121600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27800000000000014 " " y[1] (analytic) = -2.823908152656754 " " y[1] (numeric) = -2.823908152656756 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.29042002562668400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.27900000000000014 " " y[1] (analytic) = -2.824647686541403 " " y[1] (numeric) = -2.824647686541405 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.86096637761258000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28000000000000014 " " y[1] (analytic) = -2.825387001031574 " " y[1] (numeric) = -2.825387001031576 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.2871275289073200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28100000000000014 " " y[1] (analytic) = -2.826126096223492 " " y[1] (numeric) = -2.826126096223494 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.28548330442144200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28200000000000014 " " y[1] (analytic) = -2.826864972213299 " " y[1] (numeric) = -2.8268649722133006 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.2838404269781900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28300000000000014 " " y[1] (analytic) = -2.827603629097051 " " y[1] (numeric) = -2.827603629097053 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.28219889492609300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28400000000000014 " " y[1] (analytic) = -2.8283420669707224 " " y[1] (numeric) = -2.8283420669707238 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.710419029962329000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28500000000000014 " " y[1] (analytic) = -2.8290802859302007 " " y[1] (numeric) = -2.829080285930202 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.70918989530245400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28600000000000014 " " y[1] (analytic) = -2.8298182860712906 " " y[1] (numeric) = -2.8298182860712924 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.27728235464338800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28700000000000014 " " y[1] (analytic) = -2.8305560674897148 " " y[1] (numeric) = -2.830556067489716 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.70673464077223660000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28800000000000014 " " y[1] (analytic) = -2.8312936302811096 " " y[1] (numeric) = -2.831293630281111 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.70550851844325100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.28900000000000015 " " y[1] (analytic) = -2.832030974541029 " " y[1] (numeric) = -2.83203097454103 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.704283397769337700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29000000000000015 " " y[1] (analytic) = -2.8327681003649428 " " y[1] (numeric) = -2.832768100364944 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.703059277526293600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29100000000000015 " " y[1] (analytic) = -2.833505007848238 " " y[1] (numeric) = -2.8335050078482396 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.70183615649195900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29200000000000015 " " y[1] (analytic) = -2.8342416970862194 " " y[1] (numeric) = -2.8342416970862208 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.700614033446207700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29300000000000015 " " y[1] (analytic) = -2.834978168174106 " " y[1] (numeric) = -2.8349781681741075 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.699392907170946700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29400000000000015 " " y[1] (analytic) = -2.8357144212070367 " " y[1] (numeric) = -2.8357144212070375 " " absolute error = 8.8817841970012520000000000000000E-16 " " relative error = 3.13211518430007330000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29500000000000015 " " y[1] (analytic) = -2.836450456280064 " " y[1] (numeric) = -2.8364504562800654 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.69695364006965430000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29600000000000015 " " y[1] (analytic) = -2.8371862734881614 " " y[1] (numeric) = -2.8371862734881628 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.695735496817554600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29700000000000015 " " y[1] (analytic) = -2.837921872926217 " " y[1] (numeric) = -2.837921872926218 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.69451834548380300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29800000000000015 " " y[1] (analytic) = -2.8386572546890365 " " y[1] (numeric) = -2.8386572546890383 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.25773624648053300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.29900000000000015 " " y[1] (analytic) = -2.839392418871345 " " y[1] (numeric) = -2.8393924188713466 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.25611601832180100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30000000000000016 " " y[1] (analytic) = -2.840127365567783 " " y[1] (numeric) = -2.840127365567785 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.25449710789688800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30100000000000016 " " y[1] (analytic) = -2.84086209487291 " " y[1] (numeric) = -2.8408620948729117 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.25287951360313500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30200000000000016 " " y[1] (analytic) = -2.841596606881202 " " y[1] (numeric) = -2.8415966068812044 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.81407904230068100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30300000000000016 " " y[1] (analytic) = -2.8423309016870557 " " y[1] (numeric) = -2.8423309016870575 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.24964826701176900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30400000000000016 " " y[1] (analytic) = -2.843064979384782 " " y[1] (numeric) = -2.843064979384784 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.24803461152210600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30500000000000016 " " y[1] (analytic) = -2.8437988400686125 " " y[1] (numeric) = -2.8437988400686147 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.80802783222437800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30600000000000016 " " y[1] (analytic) = -2.8445324838326966 " " y[1] (numeric) = -2.844532483832699 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.80601403524316500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30700000000000016 " " y[1] (analytic) = -2.845265910771102 " " y[1] (numeric) = -2.8452659107711042 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.80400187147550300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30800000000000016 " " y[1] (analytic) = -2.8459991209778144 " " y[1] (numeric) = -2.8459991209778166 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.80199133894118300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.30900000000000016 " " y[1] (analytic) = -2.846732114546738 " " y[1] (numeric) = -2.8467321145467404 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.79998243566327400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31000000000000016 " " y[1] (analytic) = -2.847464891571697 " " y[1] (numeric) = -2.847464891571699 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.79797515966810600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31100000000000017 " " y[1] (analytic) = -2.848197452146432 " " y[1] (numeric) = -2.8481974521464344 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.79596950898527400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31200000000000017 " " y[1] (analytic) = -2.8489297963646054 " " y[1] (numeric) = -2.8489297963646076 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.79396548164762400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31300000000000017 " " y[1] (analytic) = -2.849661924319796 " " y[1] (numeric) = -2.8496619243197983 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.79196307569125200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31400000000000017 " " y[1] (analytic) = -2.8503938361055026 " " y[1] (numeric) = -2.8503938361055052 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.34795474698659200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31500000000000017 " " y[1] (analytic) = -2.8511255318151445 " " y[1] (numeric) = -2.8511255318151467 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.78796312008291500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31600000000000017 " " y[1] (analytic) = -2.851857011542058 " " y[1] (numeric) = -2.85185701154206 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.78596556651931300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31700000000000017 " " y[1] (analytic) = -2.8525882753795 " " y[1] (numeric) = -2.852588275379502 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.78396962651370200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.31800000000000017 " " y[1] (analytic) = -2.853319323420647 " " y[1] (numeric) = -2.8533193234206493 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.78197529811831200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3190000000000002 " " y[1] (analytic) = -2.8540501557585953 " " y[1] (numeric) = -2.854050155758597 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.22398606351086200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3200000000000002 " " y[1] (analytic) = -2.8547807724863596 " " y[1] (numeric) = -2.8547807724863614 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.2223931747065100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3210000000000002 " " y[1] (analytic) = -2.8555111736968763 " " y[1] (numeric) = -2.8555111736968777 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.665601177898291400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3220000000000002 " " y[1] (analytic) = -2.8562413594829996 " " y[1] (numeric) = -2.8562413594830014 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.21921124943651100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3230000000000002 " " y[1] (analytic) = -2.856971329937506 " " y[1] (numeric) = -2.8569713299375077 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.21762220987743300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3240000000000002 " " y[1] (analytic) = -2.857701085153091 " " y[1] (numeric) = -2.857701085153092 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.66202583773318800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3250000000000002 " " y[1] (analytic) = -2.8584306252223692 " " y[1] (numeric) = -2.8584306252223706 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.66083597689744600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3260000000000002 " " y[1] (analytic) = -2.8591599502378777 " " y[1] (numeric) = -2.859159950237879 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.659647073747466600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3270000000000002 " " y[1] (analytic) = -2.859889060292072 " " y[1] (numeric) = -2.859889060292074 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.21127883617568100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3280000000000002 " " y[1] (analytic) = -2.8606179554773306 " " y[1] (numeric) = -2.8606179554773323 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.2096961812009700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3290000000000002 " " y[1] (analytic) = -2.86134663588595 " " y[1] (numeric) = -2.8613466358859516 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.208114798542199000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3300000000000002 " " y[1] (analytic) = -2.8620751016101487 " " y[1] (numeric) = -2.8620751016101504 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.20653468667159100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3310000000000002 " " y[1] (analytic) = -2.862803352742066 " " y[1] (numeric) = -2.862803352742068 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.20495584406386300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3320000000000002 " " y[1] (analytic) = -2.8635313893737626 " " y[1] (numeric) = -2.8635313893737644 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.20337826919623600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3330000000000002 " " y[1] (analytic) = -2.8642592115972194 " " y[1] (numeric) = -2.864259211597221 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.20180196054841900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3340000000000002 " " y[1] (analytic) = -2.864986819504338 " " y[1] (numeric) = -2.8649868195043404 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.75028364575326400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3350000000000002 " " y[1] (analytic) = -2.8657142131869437 " " y[1] (numeric) = -2.8657142131869455 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.19865313584348900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3360000000000002 " " y[1] (analytic) = -2.86644139273678 " " y[1] (numeric) = -2.866441392736782 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.1970806167582090000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3370000000000002 " " y[1] (analytic) = -2.867168358245514 " " y[1] (numeric) = -2.867168358245516 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.19550935783639700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3380000000000002 " " y[1] (analytic) = -2.867895109804734 " " y[1] (numeric) = -2.8678951098047354 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.64545451817761100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3390000000000002 " " y[1] (analytic) = -2.8686216475059485 " " y[1] (numeric) = -2.8686216475059503 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.19237061445401700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3400000000000002 " " y[1] (analytic) = -2.8693479714405896 " " y[1] (numeric) = -2.869347971440592 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.73850390873126600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3410000000000002 " " y[1] (analytic) = -2.870074081700011 " " y[1] (numeric) = -2.870074081700013 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.73654611707824600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3420000000000002 " " y[1] (analytic) = -2.870799978375487 " " y[1] (numeric) = -2.8707999783754894 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.73458989123584700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3430000000000002 " " y[1] (analytic) = -2.871525661558216 " " y[1] (numeric) = -2.8715256615582176 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.18610818346760500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3440000000000002 " " y[1] (analytic) = -2.8722511313393158 " " y[1] (numeric) = -2.872251131339318 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.73068212950770300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3450000000000002 " " y[1] (analytic) = -2.872976387809829 " " y[1] (numeric) = -2.8729763878098313 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.72873058989195900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3460000000000002 " " y[1] (analytic) = -2.87370143106072 " " y[1] (numeric) = -2.8737014310607223 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.72678060862682600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3470000000000002 " " y[1] (analytic) = -2.8744262611828746 " " y[1] (numeric) = -2.874426261182877 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.72483218385488200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3480000000000002 " " y[1] (analytic) = -2.8751508782671023 " " y[1] (numeric) = -2.875150878267104 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.17830825097738200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3490000000000002 " " y[1] (analytic) = -2.8758752824041336 " " y[1] (numeric) = -2.875875282404136 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.72093999637597500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3500000000000002 " " y[1] (analytic) = -2.8765994736846245 " " y[1] (numeric) = -2.8765994736846263 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.17519698397539600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3510000000000002 " " y[1] (analytic) = -2.8773234521991515 " " y[1] (numeric) = -2.8773234521991533 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.17364321012492600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3520000000000002 " " y[1] (analytic) = -2.8780472180382146 " " y[1] (numeric) = -2.8780472180382164 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.17209067407546700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3530000000000002 " " y[1] (analytic) = -2.8787707712922375 " " y[1] (numeric) = -2.8787707712922392 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.17053937435550000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3540000000000002 " " y[1] (analytic) = -2.879494112051566 " " y[1] (numeric) = -2.879494112051568 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.16898930949590100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3550000000000002 " " y[1] (analytic) = -2.8802172404064703 " " y[1] (numeric) = -2.880217240406472 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.16744047802992200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3560000000000002 " " y[1] (analytic) = -2.880940156447143 " " y[1] (numeric) = -2.880940156447145 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.16589287849319200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3570000000000002 " " y[1] (analytic) = -2.8816628602637007 " " y[1] (numeric) = -2.881662860263703 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.70543313677964500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3580000000000002 " " y[1] (analytic) = -2.8823853519461835 " " y[1] (numeric) = -2.8823853519461857 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.70350171170232400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3590000000000002 " " y[1] (analytic) = -2.883107631584555 " " y[1] (numeric) = -2.883107631584557 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.16125745685035400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3600000000000002 " " y[1] (analytic) = -2.883829699268702 " " y[1] (numeric) = -2.883829699268704 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.15971477043429100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3610000000000002 " " y[1] (analytic) = -2.8845515550884357 " " y[1] (numeric) = -2.8845515550884375 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.15817330866111100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3620000000000002 " " y[1] (analytic) = -2.8852731991334917 " " y[1] (numeric) = -2.8852731991334934 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.156633070080600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3630000000000002 " " y[1] (analytic) = -2.8859946314935288 " " y[1] (numeric) = -2.88599463149353 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.616320539933669300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3640000000000002 " " y[1] (analytic) = -2.8867158522581295 " " y[1] (numeric) = -2.886715852258131 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.615167192531344000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3650000000000002 " " y[1] (analytic) = -2.887436861516802 " " y[1] (numeric) = -2.8874368615168033 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.61401475927107600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3660000000000002 " " y[1] (analytic) = -2.8881576593589777 " " y[1] (numeric) = -2.888157659358979 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.61286323907221400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3670000000000002 " " y[1] (analytic) = -2.8888782458740123 " " y[1] (numeric) = -2.888878245874014 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.14895017447446800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3680000000000002 " " y[1] (analytic) = -2.8895986211511873 " " y[1] (numeric) = -2.889598621151189 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.14741724472642400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3690000000000002 " " y[1] (analytic) = -2.890318785279707 " " y[1] (numeric) = -2.890318785279709 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.14588552808490800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3700000000000002 " " y[1] (analytic) = -2.891038738348702 " " y[1] (numeric) = -2.891038738348704 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.14435502311832200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3710000000000002 " " y[1] (analytic) = -2.8917584804472267 " " y[1] (numeric) = -2.8917584804472285 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.1428257283973700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3720000000000002 " " y[1] (analytic) = -2.8924780116642603 " " y[1] (numeric) = -2.892478011664262 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.14129764249505400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3730000000000002 " " y[1] (analytic) = -2.8931973320887074 " " y[1] (numeric) = -2.893197332088709 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.13977076398667800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3740000000000002 " " y[1] (analytic) = -2.893916441809398 " " y[1] (numeric) = -2.8939164418093997 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.13824509144983400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3750000000000002 " " y[1] (analytic) = -2.8946353409150865 " " y[1] (numeric) = -2.8946353409150882 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.13672062346439700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3760000000000002 " " y[1] (analytic) = -2.895354029494453 " " y[1] (numeric) = -2.8953540294944546 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.13519735861252700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3770000000000002 " " y[1] (analytic) = -2.896072507636103 " " y[1] (numeric) = -2.8960725076361045 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.60025647160899660000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3780000000000002 " " y[1] (analytic) = -2.896790775428567 " " y[1] (numeric) = -2.8967907754285687 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.13215443264951300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3790000000000002 " " y[1] (analytic) = -2.8975088329603014 " " y[1] (numeric) = -2.897508832960303 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.13063476871405400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3800000000000002 " " y[1] (analytic) = -2.8982266803196888 " " y[1] (numeric) = -2.89822668031969 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.596837226697644000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.3810000000000002 " " y[1] (analytic) = -2.898944317595036 " " y[1] (numeric) = -2.898944317595037 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.59569927391857260000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38200000000000023 " " y[1] (analytic) = -2.8996617448745763 " " y[1] (numeric) = -2.899661744874578 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.1260829561935200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38300000000000023 " " y[1] (analytic) = -2.900378962246471 " " y[1] (numeric) = -2.900378962246472 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.593426055325846600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38400000000000023 " " y[1] (analytic) = -2.9010959697988037 " " y[1] (numeric) = -2.901095969798805 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.5922907874108804000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38500000000000023 " " y[1] (analytic) = -2.901812767619586 " " y[1] (numeric) = -2.901812767619588 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.12154188313614300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38600000000000023 " " y[1] (analytic) = -2.9025293557967577 " " y[1] (numeric) = -2.902529355796759 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.590022929103069000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38700000000000023 " " y[1] (analytic) = -2.9032457344181806 " " y[1] (numeric) = -2.9032457344181823 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.11852044882531400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38800000000000023 " " y[1] (analytic) = -2.903961903571646 " " y[1] (numeric) = -2.903961903571648 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.1170115118089900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.38900000000000023 " " y[1] (analytic) = -2.9046778633448707 " " y[1] (numeric) = -2.904677863344873 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.64437969962482300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39000000000000024 " " y[1] (analytic) = -2.905393613825499 " " y[1] (numeric) = -2.9053936138255008 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.11399719111153900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39100000000000024 " " y[1] (analytic) = -2.9061091551011 " " y[1] (numeric) = -2.9061091551011016 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.11249180465987400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39200000000000024 " " y[1] (analytic) = -2.90682448725917 " " y[1] (numeric) = -2.906824487259172 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.11098759896290900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39300000000000024 " " y[1] (analytic) = -2.9075396103871345 " " y[1] (numeric) = -2.9075396103871363 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.10948457264089100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39400000000000024 " " y[1] (analytic) = -2.9082545245723423 " " y[1] (numeric) = -2.9082545245723446 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.63497840539534200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39500000000000024 " " y[1] (analytic) = -2.908969229902073 " " y[1] (numeric) = -2.908969229902075 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.63310256576712600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39600000000000024 " " y[1] (analytic) = -2.90968372646353 " " y[1] (numeric) = -2.9096837264635322 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.63122819520001300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39700000000000024 " " y[1] (analytic) = -2.9103980143438455 " " y[1] (numeric) = -2.910398014343848 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.15522635037634200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39800000000000024 " " y[1] (analytic) = -2.911112093630079 " " y[1] (numeric) = -2.911112093630082 " " absolute error = 3.1086244689504383000000000000000E-15 " " relative error = 1.0678477396155730000000000000E-13 "%" Correct digits = 15 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.39900000000000024 " " y[1] (analytic) = -2.9118259644092177 " " y[1] (numeric) = -2.9118259644092204 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.15073665689008600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40000000000000024 " " y[1] (analytic) = -2.912539626768175 " " y[1] (numeric) = -2.9125396267681776 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.14849444317092100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40100000000000025 " " y[1] (analytic) = -2.913253080793793 " " y[1] (numeric) = -2.9132530807937957 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.14625398207543500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40200000000000025 " " y[1] (analytic) = -2.913966326572841 " " y[1] (numeric) = -2.9139663265728437 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.14401527156346800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40300000000000025 " " y[1] (analytic) = -2.9146793641920166 " " y[1] (numeric) = -2.914679364192019 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.6181485913317490000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40400000000000025 " " y[1] (analytic) = -2.9153921937379437 " " y[1] (numeric) = -2.9153921937379463 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.13954309414564900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40500000000000025 " " y[1] (analytic) = -2.9161048152971762 " " y[1] (numeric) = -2.916104815297179 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.13730962317565600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40600000000000025 " " y[1] (analytic) = -2.9168172289561953 " " y[1] (numeric) = -2.9168172289561975 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.61256491221740300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40700000000000025 " " y[1] (analytic) = -2.917529434801409 " " y[1] (numeric) = -2.9175294348014114 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.61070658881443200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40800000000000025 " " y[1] (analytic) = -2.9182414329191557 " " y[1] (numeric) = -2.9182414329191575 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.08707977126942900000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.40900000000000025 " " y[1] (analytic) = -2.9189532233957 " " y[1] (numeric) = -2.918953223395702 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.60699428635312700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41000000000000025 " " y[1] (analytic) = -2.919664806317236 " " y[1] (numeric) = -2.9196648063172383 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.60514030393477400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41100000000000025 " " y[1] (analytic) = -2.920376181769887 " " y[1] (numeric) = -2.920376181769889 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.60328776515571200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41200000000000025 " " y[1] (analytic) = -2.921087349839703 " " y[1] (numeric) = -2.921087349839705 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.60143666834256700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41300000000000026 " " y[1] (analytic) = -2.921798310612664 " " y[1] (numeric) = -2.921798310612666 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.59958701182462300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41400000000000026 " " y[1] (analytic) = -2.922509064174678 " " y[1] (numeric) = -2.9225090641746805 " " absolute error = 2.6645352591003757000000000000000E-15 " " relative error = 9.11728655272056600000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41500000000000026 " " y[1] (analytic) = -2.9232196106115835 " " y[1] (numeric) = -2.9232196106115853 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.07671361040373100000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41600000000000026 " " y[1] (analytic) = -2.9239299500091445 " " y[1] (numeric) = -2.9239299500091467 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.59404666737439700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41700000000000026 " " y[1] (analytic) = -2.924640082453058 " " y[1] (numeric) = -2.92464008245306 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.59220275538281500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41800000000000026 " " y[1] (analytic) = -2.925350008028947 " " y[1] (numeric) = -2.925350008028949 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.07228822029788700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.41900000000000026 " " y[1] (analytic) = -2.926059726822365 " " y[1] (numeric) = -2.926059726822367 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.58851922568808200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42000000000000026 " " y[1] (analytic) = -2.926769238918796 " " y[1] (numeric) = -2.9267692389187974 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.552007762806584000000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42100000000000026 " " y[1] (analytic) = -2.92747854440365 " " y[1] (numeric) = -2.9274785444036513 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.55090484641478700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42200000000000026 " " y[1] (analytic) = -2.9281876433622687 " " y[1] (numeric) = -2.928187643362271 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.58300464208196400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42300000000000026 " " y[1] (analytic) = -2.928896535879925 " " y[1] (numeric) = -2.9288965358799266 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.06493543776404400000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42400000000000027 " " y[1] (analytic) = -2.9296052220418174 " " y[1] (numeric) = -2.929605222041819 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.06346829953491500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42500000000000027 " " y[1] (analytic) = -2.930313701933077 " " y[1] (numeric) = -2.9303137019330787 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.06200229766669300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42600000000000027 " " y[1] (analytic) = -2.931021975638763 " " y[1] (numeric) = -2.931021975638765 " " absolute error = 2.220446049250313000000000000000E-15 " " relative error = 7.57567178856244200000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42700000000000027 " " y[1] (analytic) = -2.931730043243867 " " y[1] (numeric) = -2.931730043243869 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.05907369777732700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42800000000000027 " " y[1] (analytic) = -2.932437904833308 " " y[1] (numeric) = -2.93243790483331 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.05761109714350700000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.42900000000000027 " " y[1] (analytic) = -2.9331455604919356 " " y[1] (numeric) = -2.9331455604919374 " " absolute error = 1.7763568394002505000000000000000E-15 " " relative error = 6.05614962764523300000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.43000000000000027 " " y[1] (analytic) = -2.9338530103045306 " " y[1] (numeric) = -2.933853010304532 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.54101696598596800000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.43100000000000027 " " y[1] (analytic) = -2.9345602543558025 " " y[1] (numeric) = -2.934560254355804 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.53992255763938500000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" " " "TOP MAIN SOLVE Loop" x[1] = 0.4320000000000003 " " y[1] (analytic) = -2.9352672927303924 " " y[1] (numeric) = -2.9352672927303938 " " absolute error = 1.3322676295501878000000000000000E-15 " " relative error = 4.53882899472132730000000000000E-14 "%" Correct digits = 16 h = 1.000E-3 " " "NO POLE for equation 1" "Finished!" "Maximum Time Reached before Solution Completed!" "diff ( y , x , 1 ) = ln(sqrt(0.1 * x + 0.2));" Iterations = 333 "Total Elapsed Time "= 0 Years 0 Days 0 Hours 3 Minutes 0 Seconds "Elapsed Time(since restart) "= 0 Years 0 Days 0 Hours 2 Minutes 59 Seconds "Expected Time Remaining "= 0 Years 0 Days 0 Hours 0 Minutes 35 Seconds "Optimized Time Remaining "= 0 Years 0 Days 0 Hours 0 Minutes 35 Seconds "Expected Total Time "= 0 Years 0 Days 0 Hours 3 Minutes 36 Seconds "Time to Timeout " Unknown Percent Done = 83.50000000000006 "%" (%o58) true (%o58) diffeq.max